Skip to main content
Log in

Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T–A and U–A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Praseuth D, Guieysse AL, Hélène C (1999) Triple helix formation and the antigene strategy for sequence-specific control of gene expression. Biochim Biophys Acta 1489:181–206

    Article  CAS  PubMed  Google Scholar 

  2. Besch R, Giovannangeli C, Degitz K (2004) Triplex-forming oligonucleotides - sequence-specific DNA ligands as tools for gene inhibition and for modulation of DNA-associated functions. Curr Drug Targets 5:691–703

    Article  CAS  PubMed  Google Scholar 

  3. Rogers FA, Lloyd JA, Glazer PM (2005) Triplex-forming oligonucleotides as potential tools for gene expression. Curr Med Chem Anticancer Agents 5:319–326

    Article  CAS  PubMed  Google Scholar 

  4. Simon P, Cannata F, Concordet J-P, Giovannangeli C (2008) Targeting DNA with triplex-forming oligonuleotides to modify gene sequence. Biochimie 90:1109–1116

    Article  CAS  PubMed  Google Scholar 

  5. Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36:5123–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jain A, Magistri M, Napoli S, Carbone GM, Catapone CV (2010) Mechanisms of triplex DNA-mediated inhibition of transcription initiation. Biochimie 92:317–320

    Article  CAS  PubMed  Google Scholar 

  7. Mukherjee A, Vasquez KM (2011) Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 93:1197–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandrasekaran AR, Rusling DA (2018) Triplex-forming oligonucleotides: a third strand for DNA nanobiotechnology. Nucleic Acids Res 46:1021–1037

    Article  CAS  PubMed  Google Scholar 

  9. Kaihatsu K, Janowski BA, Corey DR (2004) Recognition of chromosomal DNA by PNAs. Chem Biol 11:749–758

    Article  CAS  PubMed  Google Scholar 

  10. Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE (2006) biological activity and biotechnological aspects of peptide nucleic acid. Adv Genet 56:1–51

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen PE (2010) Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr Pharm Des 16:3118–3123

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen PE (2010) Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodiversity 7:786–804

    Article  CAS  Google Scholar 

  13. Muse O, Zengeya T, Mwaura J, Hnedzko D, McGee DW, Grewer CT, Rozners E (2013) Sequence selective recognition of double-stranded RNA at physiologically relevant conditions using PNA-peptide conjugates. ACS Chem Biol 8:1683–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Devi G, Zhou Y, Zhong Z, Toh D-FK, Chen G (2015) RNA triplexes: from structural principles to biological and biotech applications. WIREs RNA 6:111–128

    Article  CAS  PubMed  Google Scholar 

  15. Sharma C, Awasthi SK (2016) Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 89:16–37

    Article  PubMed  Google Scholar 

  16. Wu J-C, Meng Q-C, Wang H-T, Wu J, Wang Q (2017) Recent advances in peptide nucleic acid for cancer biotechnology. Acta Pharmalogica Sinica 38:798–805

    Article  CAS  Google Scholar 

  17. Fox KR, Brown T, Rusling DA (2018) DNA recognition by parallel triplex formation. In: Waring MJ (ed) Chemical biology no 7: DNA-targeting molecules as therapeutic agents. Royal Society of Chemistry, London, pp 1–32

    Google Scholar 

  18. Hnedzko D, Rozners E (2019) Sequence specific targeting of structured RNA by triplex-forming peptide nucleic acids. Methods Enzymol 623:401–416

    Article  CAS  PubMed  Google Scholar 

  19. Vasquez KM, Glazer PM (2002) Triplex-forming oligonucleotides: principles and applications. Q Rev Biophys 35:87–107

    Article  Google Scholar 

  20. Fox KR, Brown T (2005) An extra dimension in nucleic acid sequence recognition. Q Rev Biophys 38:311–320

    Article  CAS  PubMed  Google Scholar 

  21. Fox KR, Brown T (2011) Formation of stable DNA triplexes. Biochem Soc Trans 39:629–634

    Article  CAS  PubMed  Google Scholar 

  22. Hari Y, Obika S, Imanishi T (2012) Towards the sequence-selective recognition of double-stranded DNA continuing pyrimidine-purine interruptions by triplex-forming oligonucleotides. Eur J Org Chem 2012:2487–2887

    Article  Google Scholar 

  23. Demidov VV, Frank-Kamenetskii MD (2001) Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods 23:108–122

    Article  CAS  PubMed  Google Scholar 

  24. Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R (2011) peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Curr Top Med Chem 11:1535–1554

    Article  CAS  PubMed  Google Scholar 

  25. Rozners E (2012) Recent advances in chemical modification of peptide nucleic acids. J Nuc Acids 2012:518162

    Google Scholar 

  26. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  27. Wittung P, Nielsen P, Nordén B (1997) Extended DNA-recognition repertoire of peptide nucleic acid (PNA): PNA-dsDNA triplex formed with cytosine-rich homopyrimidine PNA. Biochemistry 36:7973–7979

    Article  CAS  PubMed  Google Scholar 

  28. Bentin T, Hansen GI, Nielsen PE (2006) Structural diversity of target-specific homopyrimidine peptide nucleic acid ds-DNA complexes. Nucleic Acids Res 34:5790–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansen ME, Bentin T, Nielsen PE (2009) High affinity triplex targeting of double-stranded DNA using chemically modified peptide nucleic acid oligomers. Nucleic Acids Res 37:4498–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li M, Zengeya T, Rozners E (2010) Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA. J Am Chem Soc 132:9676–9681

    Article  Google Scholar 

  31. Kotikam V, Kennedy SD, MacKay JA, Rozners E (2019) Synthetic, structural, and RNA binding studies on 2-aminiopyridine-modified triplex-forming peptide nucleic acids. Chem Eur J 25:4367–4372

    Article  CAS  PubMed  Google Scholar 

  32. Griffith MC, Risen LM, Greig MJ, Lesnik EA, Sprankle KG, Griffey RH, Kiely JS, Freier SM (1995) Single and bis peptide nucleic acids as triplexing agents: binding and stoichiometry. J Am Chem Soc 117:831–832

    Article  CAS  Google Scholar 

  33. Kosaganov YN, Stetsenko DA, Lubyako EN, Lazurkin YS, Nielsen PE (2000) Effect of temperature and ionic strength on the dissociation kinetics and lifetime of PNA–DNA triplexes. Biochemistry 39:11742–11747

    Article  CAS  PubMed  Google Scholar 

  34. Cherny DY, Belotserkovitskii BP, Frank-Kamenetskii MD, Egholm M, Buchardt O, Berg RH, Nielsen PE (1993) DNA unwinding upon strand displacement of binding of PNA to double-stranded DNA. Proc Natl Acad Sci USA 90:1667–1670

    Article  CAS  PubMed  Google Scholar 

  35. Peffer NJ, Hanvey JC, Bisi JE, Thomson SA, Hassman CF, Noble SA, Babiss LE (1993) Strand-invasion of duplex DNA by peptide nucleic acid oligomers. Proc Natl Acad Sci USA 90:10648–10652

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen PE, Egholm M, Buchardt O (1994) Evidence for (PNA)2 /DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J Mol Recognit 7:165–170

    Article  CAS  PubMed  Google Scholar 

  37. Wittung P, Nielsen P, Nordén B (1996) Direct observation of strand invasion by peptide nucleic acid (PNA) into double-stranded DNA. J Am Chem Soc 118:7049–7054

    Article  CAS  Google Scholar 

  38. Betts L, Losey JA, Veal JM, Jordan SR (1995) A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science 270:1838–1841

    Article  CAS  PubMed  Google Scholar 

  39. Demidov VV, Yavnilovich MV, Frank-Kamenetskii MD (1997) Kinetic analysis of specificity of duplex DNA targeting by homopyrimidine peptide nucleic acids. Biophys J 72:2763–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Demidov VV, Yavnilovich MV, Belotserkovskii BP, Frank-Kamenetskii MD, Nielsen PE (1995) Kinetics and mechanism of polyamide (“peptide”) nucleic acid binding to duplex DNA. Proc Natl Acad Sci USA 92:2637–2641

    Article  CAS  PubMed  Google Scholar 

  41. Frank-Kamenetski MD (1997) Biophysics of the DNA molecule. Phys Rep 288:13–60

    Article  Google Scholar 

  42. Lomakin A, Frank-Kamenetskii MD (1998) A theoretical analysis of specificity of nucleic acid interactions with oligonucleotides and peptide nucleic acids (PNAs). J Mol Biol 276:57–70

    Article  CAS  PubMed  Google Scholar 

  43. Demidov VV, Frank-Kamenetskii MD (2004) Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci 29:62–71

    Article  CAS  PubMed  Google Scholar 

  44. Krupnik OV, Lazurkin YS (2005) PNA2/DNA triplexes: stability and specificity. Rus J Genetics 41:707–719

    Article  CAS  Google Scholar 

  45. Kuhn H, Demidov VV, Frank-Kamenetskii MD, Nielsen PE (1998) Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA. Nucleic Acids Res 26:582–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang X, Ishihara T, Corey DR (2000) Strand invasion by mixed base PNAs and a PNA-peptide chimera. Nucleic Acids Res 28:3332–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaihatsu K, Braasch DA, Cansizoglu A, Corey DR (2002) Enhanced strand invasion by peptide nucleic acid-peptide conjugates. Biochemistry 41:11118–11125

    Article  CAS  PubMed  Google Scholar 

  48. Bentin T, Nielsen PE (2003) Superior duplex DNA strand invasion by acridine conjugated peptide nucleic acids. J Am Chem Soc 125:6378–6379

    Article  CAS  PubMed  Google Scholar 

  49. Bates PJ, Laughton CA, Jenkins TC, Capaldi DC, Roselt PD, Reese CB, Neidle S (1996) Efficient triple helix formation by oligodeoxyribonucleotides containing α- or β-2-amino5-(2-deoxy-d-ribofuranosyl) pyridine residues. Nucleic Acids Res 24:4176–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cassidy SA, Slickers P, Trent JO, Capaldi DC, Roselt PD, Reese CB, Neidle S, Fox KR (1997) Recognition of GC base pairs by triplex forming oligonucleotides containing nucleosides derived from 2-aminopyridine. Nucleic Acids Res 25:4891–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hilbrand S, Blaser A, Parel SP, Leumann CJ (1997) 5-substituted 2-aminopyridine C-nucleosides as protonated cytidine equivalents: increasing efficiency and selectivity in triple helix formation. J Am Chem Soc 119:5499–5511

    Article  Google Scholar 

  52. Zengeya T, Gupta P, Rozners E (2012) Triple-helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions. Angew Chem Int Ed 51:12593–12596

    Article  CAS  Google Scholar 

  53. Egholm M, Christensen L, Dueholm KL, Buchhardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Devi G, Yuan Z, Lu Y, Zhao Y, Chen G (2014) Incorporation of thio-pseudocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes. Nucleic Acids Res 42:4008–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Christensen C, Eldrup AB, Haaima G, Nielsen PE (2002) 1,8-Naphthyridin-2,7-(1,8H)-dione is an effective mimic of protonated cytosine in peptide nucleic acid triplex recognition systems. Bioorg Med Chem Lett 12:3121–3124

    Article  CAS  PubMed  Google Scholar 

  56. Guianvarc’h D, Benhida R, Fourrey J-L, Maurisse R, Sun J-S (2001) Incorporation of a novel nucleobase allows stable oligonucleotide-directed triple helix formation at the target sequence containing a purine-pyrimidine interruption. Chem Commun (Camb) 18:1814–1815

    Article  Google Scholar 

  57. Wang Y, Rusling DA, Powers VEC, Lack O, Osborne SD, Fox KR, Brown T (2005) Stable recognition of TA interruptions by triplex forming oligonucleotides containing a novel nucleoside. Biochemistry 44:5884–5892

    Article  CAS  PubMed  Google Scholar 

  58. Ranasinghe RT, Rusling DA, Powers VEC, Fox KR, Brown T (2005) Recognition of CG inversions in DNA triple helices by methylated 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Chem Commun 20:2555–2557

    Article  Google Scholar 

  59. Gerrard SR, Srinivasan N, Fox KR, Brown T (2007) CG base pair recognition within DNA triple helices using N-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Nucleosides Nucleotides Nucleic Acids 26:1367–1367

    Article  Google Scholar 

  60. Gerrard SR, Edrees MM, Bouamaied I, Fox KR, Brown T (2010) CG base pair recognition within DNA triple helices by modified N-methylpyrrolo-dC nucleosides. Org Biomol Comm 8:5087–5096

    Article  CAS  Google Scholar 

  61. Buchini S, Leumann CJ (2004) Stable and selective recognition of three base pairs in the parallel triple-helical DNA binding motif. Angew Chem Int Ed 43:3925–3928

    Article  CAS  Google Scholar 

  62. Semenyuk A, Darian E, Li J, Majumdar A, Cuenoud B, Miller PS, MacKerell AD Jr, Seidman MM (2010) Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex forming oligonucleotide containing a novel base analogue. Biochemistry 49:7867–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hari Y, Akababe M, Hatanaka Y, Nakahara M, Obika S (2011) A 4-[(3R,4R)-dihyroxypyrrolidino]pyrimidonone-2one nucleobase. Chem Commun 47:4424–4426

    Article  CAS  Google Scholar 

  64. Hari Y, Akababe M, Obika S (2013) 2′,4′-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Chem Commun 49:7421–7423

    Article  CAS  Google Scholar 

  65. Rusling DA, Powers VEC, Ranasinghe RT, Wang Y, Osborne SD, Brown T, Fox KR (2005) Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 33:3025–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohkubo A, Yamada K, Ito Y, Yoshimura K, Miyauchi K, Kanamori T, Masaki Y, Seio K, Yuasa H, Sekine M (2015) Synthesis and triplex forming properties of oligonucleotides capabale of recognizing corresponding DNA duplexes containing four base pairs. Nucleic Acids Res 43:5675–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42:13987–13995

    Article  CAS  PubMed  Google Scholar 

  68. Kaihatsu K, Shah RH, Zhao X, Corey DR (2003) Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates. Biochemistry 42:13996–14003

    Article  CAS  PubMed  Google Scholar 

  69. Lohse J, Dahl O, Nielsen PE (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc Natl Acad Sci USA 96:11804–11808

    Article  CAS  PubMed  Google Scholar 

  70. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  71. Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gill RR, Ly DH (2006) A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267

    Article  CAS  PubMed  Google Scholar 

  72. Eriksson M, Nielsen PE (1996) Solution structure of a peptide nucleic acid-DNA duplex. Nature Struct Biol 3:410–413

    Article  CAS  PubMed  Google Scholar 

  73. Brown SC, Thomson SA, Veal JM, Davis DG (1994) NMR solution structure of a peptide nucleic acid complex with RNA. Science 265:777–780

    Article  CAS  PubMed  Google Scholar 

  74. Topham CM, Smith JC (1999) The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes. J Mol Biol 292:1017–1038

    Article  CAS  PubMed  Google Scholar 

  75. Kiliszek A, Banaszak K, Dauter Z, Rypniewski W (2016) The first crystal structures of RNA-PNA duplexes and a PNA-PNA duplex containing mismatches - toward anti-sense therapy against TREDS. Nucleic Acids Res 44:1937–1943

    Article  PubMed  Google Scholar 

  76. Soliva R, Sherer E, Luque FJ, Laughton CA, Orozco M (2000) Molecular dynamics simulations of PNA–DNA and PNA–RNA duplexes in aqueous solution. J Am Chem Soc 122:5997–6008

    Article  CAS  Google Scholar 

  77. Topham CM, Smith JC (2007) Orientation preferences of backbone secondary amide functional groups in peptide nucleic acid complexes: quantum chemical calculations reveal an intrinsic preference of cationic d-amino acid-based chiral PNA analogues for the P-form. Biophys J 92:769–786

    Article  CAS  PubMed  Google Scholar 

  78. Kumar VA, Ganesh KN (2005) Conformationally constrained PNA analogues: structural evolution toward DNA/RNA binding selectivity. Acc Chem Res 38:404–412

    Article  CAS  PubMed  Google Scholar 

  79. Sugiyama T, Kittaka A (2013) Chiral peptide nucleic acids with a substituent in the N-(2-aminoethy)glycine backbone. Molecules 18:287–310

    Article  CAS  Google Scholar 

  80. Corradini R, Tedeschi T, Sforza S, Marchelli R (2014) Chiral PNAs with constrained open-chain backbones. Methods Mol Biol 1050:19–35

    Article  CAS  PubMed  Google Scholar 

  81. Menchise V, De Simone G, Tedeschi T, Corradini R, Sforza S, Marchelli R, Capasso D, Saviano M, Pedone C (2003) Insights into peptide nucleic acid (PNA) structural features: the crystal structure of a D-lysine-based chiral PNA–DNA duplex. Proc Natl Acad Sci USA 100:12021–12026

    Article  CAS  PubMed  Google Scholar 

  82. Yeh JI, Shivachev B, Rapireddy S, Crawford MJ, Gil RR, Du S, Madrid M, Ly DH (2010) Crystal structure of chiral γ-PNA with complementary DNA strand: insights into the stability and specificity of recognition and conformational preorganization. J Am Chem Soc 132:10717–10727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sforza S, Tedeschi T, Corradini R, Marchelli R (2007) Induction of helical handedness and DNA binding properties of peptide nucleic acids (PNAs) with two stereogenic centres. Eur J Chem 16:5879–5885

    Article  Google Scholar 

  84. Manicardi A, Calabretta A, Bencivenni M, Tedeschi T, Sforza S, Corradini R, Marchelli R (2010) Affinity and selectivity of C2- and C5-substituted “chiral box“ PNA in solution and on microarrays. Chirality 22:E161–E172

    Article  CAS  PubMed  Google Scholar 

  85. Crawford MJ, Rapireddy S, Bahal R, Sacui I, Ly DH (2011) Effect of steric constraint at the γ-backbone position on the conformations and hybridisation properties of PNAs. J Nucleic Acids 11:652702

    Google Scholar 

  86. Manicardi A, Corradini R (2014) Effect of chirality in gamma-PNA: PNA interaction, another piece in the picture. Artif DNA 5:e1131801

    Article  Google Scholar 

  87. Viéville JMP, Barluenga S, Winssinger N, Delsuc MA (2016) Duplex formation and secondary structure of -PNA observed by NMR and CD. Biophys Chem 210:9–13

    Article  PubMed  Google Scholar 

  88. Verona MD, Verdolino V, Palazzesi F, Corradini R (2017) Focus on PNA flexibility and RNA binding using molecular dynamics and metadynamics. Sci Rep 7:42799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He G, Rapireddy S, Bahal R, Sahu B, Ly DH (2009) Strand invasion of extended, mixed-sequence B-DNA by γ-PNAs. J Am Chem Soc 131:12088–12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bahal R, Sahu B, Rapireddy S, Lee C-M, Ly DH (2012) Sequence-unrestricted Watson-Crick recognition of double-helical B-DNA by (R)-MiniPPEG-γ-PNAs. ChemBioChem 13:56–60

    Article  CAS  PubMed  Google Scholar 

  91. Chenna V, Rapireddy S, Sahu B, Austin C, Pedroso E, Ly DH (2008) A simple cytosine to G-clamp nucleobase substitution enables chiral γ-PNAs to invade mixed-sequence double-helical B-form DNA. ChemBioChem 9:2388–2391

    Article  CAS  PubMed  Google Scholar 

  92. Rapireddy S, Bahal R, Ly DH (2011) Strand invasion of mixed sequence, double-helical B-DNA by γ-peptide nucleic acid containing G-clamp nucleobases under physiological conditions. Biochemistry 50:3913–3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gupta P, Muse O, Rozners E (2012) Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids. Biochemistry 51:63–73

    Article  CAS  PubMed  Google Scholar 

  94. Tähtinen V, Granqvist L, Murtola M, Strömberg R, Virta P (2017) 19F NMR spectroscopic analysis of the binding modes of in triple-helical peptide nucleic acid (PNA)/microRNA complexes. Chem Eur J 23:7113–7124

    Article  PubMed  Google Scholar 

  95. Tähtinen V, Verhassel A, Tuomela J, Virta P (2019) γ-(S)-Guanidinylmethyl modified triplex-forming peptide nucleic acids increase Hoogsteen-face affinity for a microRNA and enhance cellular uptake. ChemBioChem 20:3041–3051

    Article  PubMed  Google Scholar 

  96. Gupta P, Zengeya T, Rozners E (2011) Triple helical recognition of pyrimidine inversions in polypurine tracts of RNA by nucleobase-modified PNA. Chem Commun 47:11125–11127

    Article  CAS  Google Scholar 

  97. Eldrup AB, Dahl O, Nielsen PE (1997) A novel peptide nucleic acid monomer for recognition of thymine in triple helix structures. J Am Chem Soc 119:11116–11117

    Article  CAS  Google Scholar 

  98. Olsen AG, Dahl O, Nielsen PE (2003) A novel PNA-monomer for recognition of thymine in triple-helix structures. Nucleosides Nucleotides Nucleic Acids 22:1331–1333

    Article  PubMed  Google Scholar 

  99. Olsen AG, Dahl O, Nielsen PE (2004) Synthesis and evaluation of a conformationally constrained pyridazinone PNA-monomer for recognition of thymine in triple-helix structures. Bioorg Med Chem Lett 14:1551–1554

    Article  CAS  PubMed  Google Scholar 

  100. Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banás P, Jurečka P, Otyepka M (2012) The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 14:15257–15277

    Article  PubMed  Google Scholar 

  101. Jasińska M, Feig M, Trylska J (2018) Improved force fields for peptide nucleic acids with optimized backbone torsion parameters. J Chem Theor Comput 14:3603–3620

    Article  Google Scholar 

  102. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  103. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  104. Burke K (2012) Perspective on density functional theory. J Chem Phys 130:150901

    Article  Google Scholar 

  105. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. PhysChemChemPhys 19:32184

    CAS  Google Scholar 

  106. Mata RA, Suhm MA (2017) Benchmarking quantum chemical methods: are we heading in the right direction? Angew Chem Int Ed 56:11011–11018

    Article  CAS  Google Scholar 

  107. Lavery R (1988) Junctions and bends in nucleic acids: a new theoretical modelling approach. In: Olson WK, Sarma MH, Sarma RH, Sundaralingam M (eds) Structure and expression, DNA bending and curvature, vol 3. Adenine Press, New York, pp 191–211

    Google Scholar 

  108. Lavery R, Zakrzewska K, Sklenar H (1995) JUMNA (junction minimisation of nucleic acids). Comp Phys Comm 91:135–158

    Article  CAS  Google Scholar 

  109. Lavery R, Sklenar H (1988) The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn 6:63–91

    Article  CAS  PubMed  Google Scholar 

  110. Lavery R, Sklenar H (1989) Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn 6:655–667

    Article  CAS  PubMed  Google Scholar 

  111. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  112. Cossi M, Rega N, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  113. Marenich AV, Cramer CJ, Truhler DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  114. Butler KT, Luque FJ, Barril X (2009) Toward accurate relative energy predictions of the bioactive conformation of drugs. J Comput Chem 30:601–610

    Article  CAS  PubMed  Google Scholar 

  115. Sitzmann M, Weidlich IE, Filippov IV, Liao C, Peach ML, Ihlenfeldt W-D, Karki RG, Borodina YV, Cachau RE, Nicklaus MC (2012) PDB ligand conformational energies calculated quantum mechanically. J Chem Inf Mod 52:739–756

    Article  CAS  Google Scholar 

  116. Haaima G, Lohse A, Buchardt O, Nielsen PE (1996) Peptide nucleic acids (PNAs) containing thymine monomers derived from chiral amino acids: hybridisation and solubility properties of d-lysine PNA. Angew Chem Int Ed 35:1939–1942

    Article  CAS  Google Scholar 

  117. Zengeya T, Gindin A, Rozners E (2013) Improvement of sequence selectivity in triple helical recognition of RNA by phenylalanine-derived PNA. Artif DNA 4:69–76

    Article  Google Scholar 

  118. Sato T, Sato Y, Nishizawa S (2017) Optimization of the alkyl linker of TO base surrogate in triplex forming PNA for enhanced bind to double-stranded RNA. Chem Eur J 23:4079–4088

    Article  CAS  PubMed  Google Scholar 

  119. Westbrook JD, Shao C, Feng Z, Zhuravela M, Velankar S, Young J (2015) The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics 31:1274–1278

    Article  PubMed  Google Scholar 

  120. Humphrey W, Dalke A, Schulten K (1996) VMD - Visual molecular dynamics. J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Richard Lavery for making the CURVES and JUMNA computer programs available to us. CMT is grateful to the University of Tennessee and the Oak Ridge Institute for Science and Education (ORISE) for the award of visiting scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Topham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topham, C.M., Smith, J.C. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 35, 355–369 (2021). https://doi.org/10.1007/s10822-021-00375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00375-9

Keywords

Navigation