Skip to main content
Log in

D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The Drug Design Data Resource (D3R) Grand Challenges present an opportunity to assess, in the context of a blind predictive challenge, the accuracy and the limits of tools and methodologies designed to help guide pharmaceutical drug discovery projects. Here, we report the results of our participation in the D3R Grand Challenge 4 (GC4), which focused on predicting the binding poses and affinity ranking for compounds targeting the \(\beta\)-amyloid precursor protein (BACE-1). Our ligand similarity-based protocol using HYBRID (OpenEye Scientific Software) successfully identified poses close to the native binding mode for most of the ligands with less than 2 Å RMSD accuracy. Furthermore, we compared the performance of our HYBRID-based approach to that of AutoDock Vina and DOCK 6 and found that using a reference ligand to guide the docking process is a better strategy for pose prediction and helped HYBRID to perform better here. We also conducted end-point free energy estimates on molecules dynamics based ensembles of protein-ligand complexes using molecular mechanics combined with generalized Born surface area method (MM-GBSA). We found that the binding affinity ranking based on MM-GBSA scores have poor correlation with the experimental values. Finally, the main lessons from our participation in D3R GC4 are: (i) the generation of the macrocyclic conformers is a key step for successful pose prediction, (ii) the protonation states of the BACE-1 binding site should be treated carefully, (iii) the MM-GBSA method could not discriminate well between different predicted binding poses, and (iv) the MM-GBSA method does not perform well at predicting protein–ligand binding affinities here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sousa SF, Fernandes PA, Ramos MJ (2006) Proteins Struct Funct Bioinform 65(1):15. https://doi.org/10.1002/prot.21082

    Article  CAS  Google Scholar 

  2. Gilson MK, Zhou HX (2007) Annu Rev Biophys Biomol Struct. https://doi.org/10.1146/annurev.biophys.36.040306.132550

    Article  PubMed  Google Scholar 

  3. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21(2):150. https://doi.org/10.1016/j.sbi.2011.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) Nat Neurosci 4(3):233. https://doi.org/10.1038/85064

    Article  CAS  PubMed  Google Scholar 

  5. Toulokhonova L, Metzler WJ, Witmer MR, Copeland RA, Marcinkeviciene J (2003) J Biol Chem 278(7):4582. https://doi.org/10.1074/jbc.M210471200

    Article  CAS  PubMed  Google Scholar 

  6. McGann M (2012) J Comput Aided Mol Des 26(8):897. https://doi.org/10.1007/s10822-012-9584-8

    Article  CAS  PubMed  Google Scholar 

  7. Genheden S, Ryde U (2015) Expert Opin Drug Discov 10(5):449. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trott O, Olson AJ (2010) J Comput Chem 31(2):455. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) J Comput Chem 36(15):1132. https://doi.org/10.1002/jcc.23905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2013) J Med Chem 57(8):3186. https://doi.org/10.1021/jm401411z

    Article  CAS  PubMed  Google Scholar 

  11. Fukunishi Y, Nakamura H (2008) J Mol Graph Model 26(6):1030. https://doi.org/10.1016/j.jmgm.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  12. Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) J Chem Inf Model 55:1771. https://doi.org/10.1021/acs.jcim.5b00142

    Article  CAS  PubMed  Google Scholar 

  13. Wu G, Vieth M (2004) J Med Chem 47(12):3142. https://doi.org/10.1021/jm040015y

    Article  CAS  PubMed  Google Scholar 

  14. Kumar A, Zhang KY (2018) J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0142-x

    Article  PubMed  Google Scholar 

  15. Gaieb Z, Parks CD, Chiu M, Yang H, Shao C, Walters WP, Lambert MH, Nevins N, Bembenek SD, Ameriks MK, Mirzadegan T, Burley SK, Amaro RE, Gilson MK (2019) J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0180-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gilliland G, Berman HM, Weissig H, Shindyalov IN, Westbrook J, Bourne PE, Bhat TN, Feng Z (2000) Nucleic Acids Res 28(1):235. https://doi.org/10.1093/nar/28.1.235

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kortum SW, Benson TE, Bienkowski MJ, Emmons TL, Prince DB, Paddock DJ, Tomasselli AG, Moon JB, LaBorde A, TenBrink RE (2007) Bioorg Med Chem Lett 17(12):3378. https://doi.org/10.1016/j.bmcl.2007.03.096

    Article  CAS  PubMed  Google Scholar 

  18. Clarke B, Demont E, Dingwall C, Dunsdon R, Faller A, Hawkins J, Hussain I, MacPherson D, Maile G, Matico R, Milner P, Mosley J, Naylor A, O’Brien A, Redshaw S, Riddell D, Rowland P, Soleil V, Smith KJ, Stanway S, Stemp G, Sweitzer S, Theobald P, Vesey D, Walter DS, Ward J, Wayne G (2008) Bioorg Med Chem Lett 18(3):1017. https://doi.org/10.1016/j.bmcl.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  19. Machauer R, Laumen K, Veenstra S, Rondeau JM, Tintelnot-Blomley M, Betschart C, Jaton AL, Desrayaud S, Staufenbiel M, Rabe S, Paganetti P, Neumann U (2009) Bioorg Med Chem Lett 19(5):1366. https://doi.org/10.1016/j.bmcl.2009.01.055

    Article  CAS  PubMed  Google Scholar 

  20. Lerchner A, Machauer R, Betschart C, Veenstra S, Rueeger H, McCarthy C, Tintelnot-Blomley M, Jaton AL, Rabe S, Desrayaud S, Enz A, Staufenbiel M, Paganetti P, Rondeau JM, Neumann U (2010) Bioorg Med Chem Lett 20(2):603. https://doi.org/10.1016/j.bmcl.2009.11.092

    Article  CAS  PubMed  Google Scholar 

  21. Sandgren V, Agback T, Johansson PO, Lindberg J, Kvarnström I, Samuelsson B, Belda O, Dahlgren A (2012) Bioorg Med Chem 20(14):4377. https://doi.org/10.1016/j.bmc.2012.05.039

    Article  CAS  PubMed  Google Scholar 

  22. Coburn CA, Stachel SJ, Jones KG, Steele TG, Rush DM, DiMuzio J, Pietrak BL, Lai MT, Huang Q, Lineberger J, Jin L, Munshi S, Katharine Holloway M, Espeseth A, Simon A, Hazuda D, Graham SL, Vacca JP (2006) Bioorg Med Chem Lett 16(14):3635. https://doi.org/10.1016/j.bmcl.2006.04.076

    Article  CAS  PubMed  Google Scholar 

  23. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Nucleic Acids Res 32(Suppl 2):W665. https://doi.org/10.1093/nar/gkh381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  25. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) J Chem Inf Model 50(4):572. https://doi.org/10.1021/ci100031x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49(20):5912. https://doi.org/10.1021/jm050362n

    Article  CAS  PubMed  Google Scholar 

  27. Ellis CR, Tsai CC, Hou X, Shen J (2016) J Phys Chem Lett 7(6):944. https://doi.org/10.1021/acs.jpclett.6b00137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Case D, Brozell S, Cerutti D, Cheatham TI, Cruzeiro V, Darden T, Duke R, Ghoreishi D, Gohlke H, Goetz A, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Lee T, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz K, Miao Y, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe D, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling C, Smith J, Swails J, Walker R, Wang J, Wei H, Wolf R, Wu X, Xiao L, York D, Kollman P (2018) Amber 2018. University of California, San Francisco

    Google Scholar 

  29. Case D, Cerutti D, Cheateham T, Darden T, Duke R, Giese T, Gohlke H, Goetz A, Greene D, Homeyer N, Simmerling C, Botello-Smith W, Swail J, Walker R, Wang J, Wolf R, Wu X, Xiao L, Kollman P (2016) Amber 2016. University of California, San Francisco

    Google Scholar 

  30. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  31. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Funct Bioinform 65:712. https://doi.org/10.1002/prot.21123

    Article  CAS  Google Scholar 

  32. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  34. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) J Chem Theory Comput 8(9):3314. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen H, Roe DR, Simmerling C (2013) J Chem Theory Comput 9(4):2020. https://doi.org/10.1021/ct3010485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu K, Kokubo H (2017) J Chem Inf Model 57(10):2514. https://doi.org/10.1021/acs.jcim.7b00412

    Article  CAS  PubMed  Google Scholar 

  37. Kaus JW, Harder E, Lin T, Abel R, McCammon JA, Wang L (2015) J Chem Theory Comput 11(6):2670. https://doi.org/10.1021/acs.jctc.5b00214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R (1988) J Med Chem 31(4):722. https://doi.org/10.1021/jm00399a006

    Article  CAS  PubMed  Google Scholar 

  40. Meng EC, Shoichet BK, Kuntz ID (1992) J Comput Chem 13(4):505. https://doi.org/10.1002/jcc.540130412

    Article  CAS  Google Scholar 

  41. Yu HS, Deng Y, Wu Y, Sindhikara D, Rask AR, Kimura T, Abel R, Wang L (2017) J Chem Theory Comput 13(12):6290. https://doi.org/10.1021/acs.jctc.7b00885

    Article  CAS  PubMed  Google Scholar 

  42. Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) J Comput Chem 32(4):742. https://doi.org/10.1002/jcc.21643

    Article  CAS  PubMed  Google Scholar 

  43. Poongavanam V, Danelius E, Peintner S, Alcaraz L, Caron G, Cummings MD, Wlodek S, Erdelyi M, Hawkins PCD, Ermondi G, Kihlberg J (2018) ACS Omega 3(9):11742. https://doi.org/10.1021/acsomega.8b01379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Nature 402(6761):537. https://doi.org/10.1038/990114

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N (2008) Mol Cell Biol 28(11):3663. https://doi.org/10.1128/MCB.02185-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mermelstein DJ, McCammon JA, Walker RC (2019) J Mol Recognit 32(3):e2765. https://doi.org/10.1002/jmr.2765

    Article  CAS  PubMed  Google Scholar 

  47. Ellis CR, Shen J (2015) J Am Chem Soc 137(30):9543. https://doi.org/10.1021/jacs.5b05891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim MO, Blachly PG, McCammon JA (2015) PLoS Comput Biol 11(10):1. https://doi.org/10.1371/journal.pcbi.1004341

    Article  CAS  Google Scholar 

  49. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(2):525. https://doi.org/10.1021/ct100578z

    Article  CAS  PubMed  Google Scholar 

  50. El Khoury L, Santos-Martins D, Sasmal S, Eberhardt J, Bianco G, Ambrosio F, Solis-Vasquez L, Koch A, Mobley DL, Forli S (2019) J Comput Aided Mol Des. https://doi.org/10.1007/s10822-019-00240-w

    Article  PubMed  Google Scholar 

  51. Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) J Comput Chem 31(4):797. https://doi.org/10.1002/jcc.21372

    Article  CAS  PubMed  Google Scholar 

  52. Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49(16):4805. https://doi.org/10.1021/jm060522a

    Article  CAS  PubMed  Google Scholar 

  53. Su PC, Tsai CC, Mehboob S, Hevener KE, Johnson ME (2015) J Comput Chem 36(25):1859. https://doi.org/10.1002/jcc.24011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Réau M, Langenfeld F, Zagury JF, Montes M (2018) J Comput Aided Mol Des 32(1):231. https://doi.org/10.1007/s10822-017-0063-0

    Article  CAS  PubMed  Google Scholar 

  55. Misini Ignjatović M, Caldararu O, Dong G, Muñoz-Gutierrez C, Adasme-Carreño F, Ryde U (2016) J Comput Aided Mol Des 30(9):707. https://doi.org/10.1007/s10822-016-9942-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salmaso V, Sturlese M, Cuzzolin A, Moro S (2018) J Comput Aided Mol Des 32(1):251. https://doi.org/10.1007/s10822-017-0051-4

    Article  CAS  PubMed  Google Scholar 

  57. Shirts MR, Mobley DL, Brown SP (2010) Drug design: structure- and ligand-based approaches. Cambridge University Press, New York, pp 61–86

    Book  Google Scholar 

  58. Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U (2012) J Comput Aided Mol Des 26(5):527. https://doi.org/10.1007/s10822-011-9524-z

    Article  CAS  PubMed  Google Scholar 

  59. Thompson DC, Humblet C, Joseph-McCarthy D (2008) J Chem Inf Model 48(5):1081. https://doi.org/10.1021/ci700470c PMID: 18465849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We particularly appreciate Christopher I. Bayly (OpenEye Scientific Software) for his insight on BACE-1 protonation states and different modeling techniques. We would like to thank OpenEye Scientific Software for providing us (via an academic license) with many of the pieces of software used in this work. Molecular graphics used in the paper were generated using Chimera (University of California, San Francisco) [24]. LEK and SS thanks Caitlin Bannan for helpful discussions on pKa of small molecules. SS also thanks Mark McGann (OpenEye Scientific Software) for discussing macrocycle conformer generation using OMEGA. We also appreciate financial support from the National Institutes of Health (1R01GM108889-01 and 1R01GM124270-01A1). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Mobley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 4050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmal, S., El Khoury, L. & Mobley, D.L. D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors. J Comput Aided Mol Des 34, 163–177 (2020). https://doi.org/10.1007/s10822-019-00249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00249-1

Keywords

Navigation