Skip to main content

Advertisement

Log in

Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The glyoxalase-I (GLO-I) enzyme, which is the initial enzyme of the glyoxalase system that is responsible for the detoxification of cytotoxic α-ketoaldehydes, such as methylglyoxal, has been approved as a valid target in cancer therapy. Overexpression of GLO-I has been observed in several types of carcinomas, including breast, colorectal, prostate, and bladder cancer. In this work we aimed to identify potential GLO-I inhibitors via employing different structure-based drug design techniques including structure-based poly-pharmacophore modelling, virtual screening, and molecular docking. Poly-pharmacophore modelling was applied in this study in order to thoroughly explore the binding site of the target enzyme, thereby, revealing hits that could bind in a nonconventional way which can pave the way for designing more potent and selective ligands with novel chemotypes. The modelling phase has resulted in the selection of 31 compounds that were biologically evaluated against human GLO-I enzyme. Among the tested set, seven compounds showed excellent inhibitory activities with IC50 values ranging from 0.34 to 30.57 μM. The most active compound (ST018515) showed an IC50 of 0.34 ± 0.03 μM, which, compared to reported GLO-I inhibitors, can be considered a potent inhibitor, making it a good candidate for further optimization towards designing more potent GLO-I inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dakin HD, Dudley HW (1913) An enzyme concerned with the formation of hydroxy acids from ketonic aldehydes. J Biol Chem 14(2):155–157

    CAS  Google Scholar 

  2. Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification-A role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol: Vasc Syst 27(4):565–573. https://doi.org/10.1016/0306-3623(95)02054-3

    Article  CAS  Google Scholar 

  3. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  Google Scholar 

  4. Chen Y-L, Li Q-Z (2007) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition. J Theor Biol 248(2):377–381. https://doi.org/10.1016/j.jtbi.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  5. Sousa Silva M, Gomes Ricardo A, Ferreira Antonio EN, Ponces Freire A, Cordeiro C (2013) The glyoxalase pathway: the first hundred years… and beyond. Biochem J 453(1):1–15. https://doi.org/10.1042/bj20121743

    Article  CAS  PubMed  Google Scholar 

  6. Guo Y, Zhang Y, Yang X, Lu P, Yan X, Xiao F, Zhou H, Wen C, Shi M, Lu J, Meng QH (2016) Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol Ther 17(2):169–180. https://doi.org/10.1080/15384047.2015.1121346

    Article  CAS  PubMed  Google Scholar 

  7. Thornalley PJ (2003) Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans 31(6):1372. https://doi.org/10.1042/bst0311372

    Article  CAS  PubMed  Google Scholar 

  8. Rulli A, Carli L, Romani R, Baroni T, Giovannini E, Rosi G, Talesa V (2001) Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 66(1):67–72. https://doi.org/10.1023/A:1010632919129

    Article  CAS  PubMed  Google Scholar 

  9. Mearini E, Romani R, Mearini L, Antognelli C, Zucchi A, Baroni T, Porena M, Talesa V (2002) Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas. Eur J Cancer 38(14):1946–1950. https://doi.org/10.1016/S0959-8049(02)00236-8

    Article  CAS  PubMed  Google Scholar 

  10. Sakamoto H, Mashima T, Sato S, Hashimoto Y, Yamori T, Tsuruo T (2001) Selective activation of apoptosis program by Sp-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Clin Cancer Res 7(8):2513–2518

    CAS  PubMed  Google Scholar 

  11. Sakamoto H, Mashima T, Kizaki A, Dan S, Hashimoto Y, Naito M, Tsuruo T (2000) Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 95(10):3214–3218

    Article  CAS  Google Scholar 

  12. Thornalley PJ, Rabbani N (2011) Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 22(3):318–325. https://doi.org/10.1016/j.semcdb.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  13. Kreycy N, Gotzian C, Fleming T, Flechtenmacher C, Grabe N, Plinkert P, Hess J, Zaoui K (2017) Glyoxalase 1 expression is associated with an unfavorable prognosis of oropharyngeal squamous cell carcinoma. BMC Cancer 17(1):382. https://doi.org/10.1186/s12885-017-3367-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hai-Tao Peng JC, Liu Tian-Yu, Yan-Qing Wu, Lin Xiao-Hong, Lai Yuan-Hui, Huang Ying-Feng (2017) Up-regulation of the tumor promoter glyoxalase-1 indicates poor prognosis in breast cancer. Int J Clin Exp Pathol 10(11):10852–10862

    Google Scholar 

  15. Vince R, Wadd WB (1969) Glyoxalase inhibitors as potential anticancer agents. Biochem Biophys Res Commun 35(5):593–598. https://doi.org/10.1016/0006-291X(69)90445-8

    Article  CAS  PubMed  Google Scholar 

  16. Murthy NSRK, Bakeris T, Kavarana MJ, Hamilton DS, Lan Y, Creighton DJ (1994) S-(N-Aryl-N-hydroxycarbamoyl)glutathione derivatives are tight-binding inhibitors of glyoxalase I and slow substrates for glyoxalase II. J Med Chem 37(14):2161–2166. https://doi.org/10.1021/jm00040a007

    Article  CAS  PubMed  Google Scholar 

  17. More SS, Vince R (2009) Inhibition of glyoxalase I: the first low-nanomolar tight-binding inhibitors. J Med Chem 52(15):4650–4656. https://doi.org/10.1021/jm900382u

    Article  CAS  PubMed  Google Scholar 

  18. Vince R, Daluge S, Wadd WB (1971) Inhibition of glyoxalase I by S-substituted glutathiones. J Med Chem 14(5):402–404. https://doi.org/10.1021/jm00287a006

    Article  CAS  PubMed  Google Scholar 

  19. Takasawa R, Takahashi S, Saeki K, Sunaga S, Yoshimori A, Tanuma S-i (2008) Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects. Bioorg Med Chem 16(7):3969–3975. https://doi.org/10.1016/j.bmc.2008.01.031

    Article  CAS  PubMed  Google Scholar 

  20. Liu M, Yuan M, Luo M, Bu X, Luo H-B, Hu X (2010) Binding of curcumin with glyoxalase I: molecular docking, molecular dynamics simulations, and kinetics analysis. Biophys Chem 147(1):28–34. https://doi.org/10.1016/j.bpc.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  21. Chiba T, Ohwada J, Sakamoto H, Kobayashi T, Fukami TA, Irie M, Miura T, Ohara K, Koyano H (2012) Design and evaluation of azaindole-substituted N-hydroxypyridones as glyoxalase I inhibitors. Bioorg Med Chem Lett 22(24):7486–7489. https://doi.org/10.1016/j.bmcl.2012.10.045

    Article  CAS  PubMed  Google Scholar 

  22. Perez C, Barkley-Levenson AM, Dick BL, Glatt PF, Martinez Y, Siegel D, Momper JD, Palmer AA, Cohen SM (2019) Metal-binding pharmacophore library yields the discovery of a glyoxalase 1 inhibitor. J Med Chem 62(3):1609–1625. https://doi.org/10.1021/acs.jmedchem.8b01868

    Article  CAS  PubMed  Google Scholar 

  23. Takasawa R, Tao A, Saeki K, Shionozaki N, Tanaka R, Uchiro H, Takahashi S, Yoshimori A, Tanuma S-i (2011) Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore. Bioorg Med Chem Lett 21(14):4337–4342. https://doi.org/10.1016/j.bmcl.2011.05.046

    Article  CAS  PubMed  Google Scholar 

  24. Al-Balas Q, Hassan M, Al-Oudat B, Alzoubi H, Mhaidat N, Almaaytah A (2012) Generation of the first structure-based pharmacophore model containing a selective “zinc binding group” feature to identify potential glyoxalase-1 inhibitors. Molecules 17(12):13740–13758. https://doi.org/10.3390/molecules171213740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Balas QA, Hassan MA, Al-Shar’i NA, Mhaidat NM, Almaaytah AM, Al-Mahasneh FM, Isawi IH (2016) Novel glyoxalase-i inhibitors possessing a “zinc-binding feature” as potential anticancer agents. Drug design, development and therapy 10:2623. https://doi.org/10.2147/DDDT.S110997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Al-Balas QA, Hassan MA, Al-Shar'i NA, Al Jabal GA, Almaaytah AM (2019) Recent advances in glyoxalase-I inhibition. Mini-Rev Med Chem 19(4):281–291. https://doi.org/10.2174/1389557518666181009141231

    Article  CAS  Google Scholar 

  27. Cameron AD, Olin B, Ridderström M, Mannervik B, Jones TA (1997) Crystal structure of human glyoxalase I-evidence for gene duplication and 3D domain swapping. EMBO J 16(12):3386–3395. https://doi.org/10.1093/emboj/16.12.3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cameron AD, Ridderström M, Olin B, Kavarana MJ, Creighton DJ, Mannervik B (1999) Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry 38(41):13480–13490. https://doi.org/10.1021/bi990696c

    Article  CAS  PubMed  Google Scholar 

  29. Biovia DS (2017) Discovery studio modeling environment, Pipeline Pilot Client. Dassault Systèmes, San Diego

    Google Scholar 

  30. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA

    Google Scholar 

  31. GraphPad Prism (2012). 6.01 for Windows edn., La Jolla California USA

  32. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The protein data bank. Acta Crystallogr D 58(1):899–907. https://doi.org/10.1107/S0907444902003451

    Article  CAS  PubMed  Google Scholar 

  33. Berman H (2008) The protein data bank: a historical perspective. Acta Crystallogr A 64(1):88–95. https://doi.org/10.1107/S0108767307035623

    Article  CAS  PubMed  Google Scholar 

  34. Spassov VZ, Flook PK, Yan L (2008) LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Protein Eng Des Sel 21(2):91–100. https://doi.org/10.1093/protein/gzm083

    Article  CAS  PubMed  Google Scholar 

  35. Spassov VZ, Yan L (2008) A fast and accurate computational approach to protein ionization. Protein Sci 17(11):1955–1970. https://doi.org/10.1110/ps.036335.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Shar’i NA, Hassan M, Al-Balas Q (2015) Identification of possible glyoxalase II inhibitors as anticancer agents by a customized 3D structure-based pharmacophore mode. Jordan J Pharm Sci 8(5):83–103

    Google Scholar 

  37. Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562. https://doi.org/10.1002/jcc.10306

    Article  CAS  PubMed  Google Scholar 

  38. Schlick T (2002) Geometry optimization. In: von Ragué Schleyer P, Allinger NL, Clark T et al (eds) Encyclopedia of computational chemistry. Wiley, New York

    Google Scholar 

  39. Tirado-Rives J, Jorgensen WL (2006) Contribution of conformer focusing to the uncertainty in predicting free energies for protein−ligand binding. J Med Chem 49(20):5880–5884. https://doi.org/10.1021/jm060763i

    Article  CAS  PubMed  Google Scholar 

  40. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Balas QA, Hassan MA, Al Jabal GA, Al-Shar’i NA, Almaaytah AM, El-Elimat T (2017) Novel thiazole carboxylic acid derivatives possessing a “zinc binding feature” as potential human glyoxalase-I inhibitors. Lett Drug Des Discov 14(11):1324–1334. https://doi.org/10.2174/1570180814666170306120954

    Article  CAS  Google Scholar 

  42. Fonseca-Sanchez MA, Rodriguez Cuevas S, Mendoza-Hernandez G, Bautista-Pina V, Arechaga Ocampo E, Hidalgo Miranda A, Quintanar Jurado V, Marchat LA, Alvarez-Sanchez E, Perez Plasencia C, Lopez-Camarillo C (2012) Breast cancer proteomics reveals a positive correlation between glyoxalase 1 expression and high tumor grade. Int J Oncol 41(2):670–680. https://doi.org/10.3892/ijo.2012.1478

    Article  CAS  PubMed  Google Scholar 

  43. Hutschenreuther A, Bigl M, Hemdan NY, Debebe T, Gaunitz F, Birkenmeier G (2016) Modulation of GLO1 expression affects malignant properties of cells. Int J Mol Sci 17(12):2133. https://doi.org/10.3390/ijms17122133

    Article  CAS  PubMed Central  Google Scholar 

  44. Botta CB, Cabri W, Cini E, De Cesare L, Fattorusso C, Giannini G, Persico M, Petrella A, Rondinelli F, Rodriquez M, Russo A, Taddei M (2011) Oxime amides as a novel zinc binding group in histone deacetylase inhibitors: synthesis, biological activity, and computational evaluation. J Med Chem 54(7):2165–2182. https://doi.org/10.1021/jm101373a

    Article  CAS  PubMed  Google Scholar 

  45. Agrawal A, Romero-Perez D, Jacobsen JA, Villarreal FJ, Cohen SM (2008) Zinc-binding groups modulate selective inhibition of MMPs. ChemMedChem 3(5):812–820. https://doi.org/10.1002/cmdc.200700290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bohm H (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78

    Article  CAS  Google Scholar 

  47. Böhm H-J (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6(6):593–606. https://doi.org/10.1007/bf00126217

    Article  PubMed  Google Scholar 

  48. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406. https://doi.org/10.1016/S0959-440X(96)80061-3

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Leung K-S, Wong M-H, Ballester PJ (2016) Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinform 17(Suppl 11):308–308. https://doi.org/10.1186/s12859-016-1169-4

    Article  Google Scholar 

  50. Huang S-Y, Zou X (2007) Efficient molecular docking of NMR structures: application to HIV-1 protease. Protein Sci 16(1):43–51. https://doi.org/10.1110/ps.062501507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Musoev A, Numonov S, You Z, Gao H (2019) Discovery of novel DPP-IV inhibitors as potential candidates for the treatment of type 2 diabetes mellitus predicted by 3D QSAR pharmacophore models, molecular docking and de novo evolution. Molecules 24(16):2870

    Article  CAS  Google Scholar 

  52. Zhu T, Cao S, Su P-C, Patel R, Shah D, Chokshi HB, Szukala R, Johnson ME, Hevener KE (2013) Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem 56(17):6560–6572. https://doi.org/10.1021/jm301916b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10(1):14–32. https://doi.org/10.2174/156802610790232305

    Article  CAS  PubMed  Google Scholar 

  54. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3(8):660. https://doi.org/10.1038/nrd1467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jordan University of Science and Technology, Grant Number (20170288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar A. Al-Shar’i.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shar’i, N.A., Al-Balas, Q.A., Al-Waqfi, R.A. et al. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking. J Comput Aided Mol Des 33, 799–815 (2019). https://doi.org/10.1007/s10822-019-00226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00226-8

Keywords

Navigation