Skip to main content

Advertisement

Log in

Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Biguanide derivatives exhibit a wide variety of therapeutic applications, including anti-cancer effects. Metformin is an effective anti-cancer agent against breast cancer, lung cancer, and prostate cancer. In the crystal structure (PDB ID: 5G5J), it was found that metformin is found in the active site of CYP3A4, and the associated anti-cancer effect was explored. Taking clues from this work, pharmacoinformatics research has been carried out on a series of known and virtual biguanide, guanylthiourea (GTU), and nitreone derivatives. This exercise led to the identification of more than 100 species that exhibit greater binding affinity toward CYP3A4 in comparison to that of metformin. Selected six molecules were subjected to molecular dynamics simulations, and the results are presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Electronic Supporting Information (ESI) was uploaded. Additional supporting information may be found in the online version of this article.

References

  1. Kathuria D, Raul AD, Wanjari P, Bharatam PV (2021) Biguanides: species with versatile therapeutic applications. Eur J Med Chem 219:113378. https://doi.org/10.1016/j.ejmech.2021.113378

    Article  CAS  PubMed  Google Scholar 

  2. Kathuria D, Bankar AA, Bharatam PV (2018) “What’s in a structure?” The story of biguanides. J Mol Struct 1152:61–78. https://doi.org/10.1016/j.molstruc.2017.08.100

    Article  CAS  Google Scholar 

  3. Pollak M (2010) Metformin and other biguanides in oncology: advancing the research agendametformin and other biguanides in oncology. Cancer Prev Res (Phila) 3:1060–1065. https://doi.org/10.1158/1940-6207.CAPR-10-0175

    Article  CAS  PubMed  Google Scholar 

  4. Bailey CJ (1992) Biguanides and NIDDM. Diabetes Care 15:755–772. https://doi.org/10.2337/diacare.15.6.755-72

    Article  CAS  PubMed  Google Scholar 

  5. Slotta K, Über TR (1929) Biguanide, II.: Die blutzucker-senkende Wirkung der Biguanide. Berichte der deutschen chemischen Gesellschaft (A and B Series) 62:1398–1405. https://doi.org/10.1002/cber.19290620605

    Article  Google Scholar 

  6. Curd F, Davey D, Rose F (1945) Studies on synthetic antimalarial drugs: X.—some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Ann Trop Med Parasitol 39:208–216. https://doi.org/10.1080/00034983.1945.11685237

    Article  CAS  PubMed  Google Scholar 

  7. Ungar G, Freedman L, Shapiro SL (1957) Pharmacological studies of a new oral hypoglycemic drug. Proc Soc Exp Biol Med 95:190–192. https://doi.org/10.3181/00379727-95-23163

    Article  CAS  PubMed  Google Scholar 

  8. Mehnert H, Seitz W (1958) Weitere Ergebnisse der diabetesbehandlung mit blutzuckersenkendenbiguaniden. Munch Med Wschr 100:1849–1851

    CAS  PubMed  Google Scholar 

  9. Barnes GP, Carter HG, Gross A, Bhaskar SN, Schildt NN, Bush AG (1972) Dental plaque reduction with an antibacterial mouth rinse. Part I. Oral Surg Oral Med Oral Pathol 34:553–558. https://doi.org/10.1016/0030-4220(72)90337-4

    Article  CAS  PubMed  Google Scholar 

  10. Pinelli A, Trivulzio S, Pojaga G, Rossoni G (1996) Effects of 2-guanidine-4-methylquinazoline on gastric acid secretion in rats. Pharmacol Res 34:225–230. https://doi.org/10.1006/phrs.1996.0092

    Article  CAS  PubMed  Google Scholar 

  11. García Rubiño ME, Carrillo E, Ruiz Alcalá G, Domínguez-Martín A, Marchal A, Boulaiz J, H. (2019) Phenformin as an anticancer agent: challenges and prospects. Int J Mol Sci 20:3316. https://doi.org/10.3390/ijms20133316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma P, Kumar S (2018) Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD). Cell Oncol 41:637–650. https://doi.org/10.1007/s13402-018-0398-0

    Article  CAS  Google Scholar 

  13. Henderson D, Frieson D, Zuber J, Solomon SS (2017) Metformin has positive therapeutic effects in colon cancer and lung cancer. Am J Med Sci 354:246–251. https://doi.org/10.1016/j.amjms.2017.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z et al (2018) Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res 78:1779–1791. https://doi.org/10.1158/0008-5472.CAN-17-2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM et al (2014) Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer 5:374–389. https://doi.org/10.1007/s12672-014-0188-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma A, Bandyopadhayaya S, Chowdhury K, Sharma T, Maheshwari R, Das A et al (2019) Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One. 14:e0209435. https://doi.org/10.1371/journal.pone.0209435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou S, Xu L, Cao M, Wang Z, Xiao D, Xu S et al (2019) Anticancer properties of novel pyrazole-containing biguanide derivatives with activating the adenosine monophosphate- activated protein kinase signaling pathway. Arch Pharm 352:1900075. https://doi.org/10.1002/ardp.201900075

    Article  CAS  Google Scholar 

  18. Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J et al (2011) CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14, 15-epoxyeicosatrienoic acid (EET). J Biol Che 286:17543–17559. https://doi.org/10.1074/jbc.M110.198515

    Article  CAS  Google Scholar 

  19. Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I et al (2018) Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer and Metastasis Revi 37:409–423

    Article  CAS  Google Scholar 

  20. Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG et al (2017) Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem Bio 24(1259–75):e6. https://doi.org/10.1016/j.chembiol.2017.08.009

    Article  CAS  Google Scholar 

  21. Bharatam PV, Patel DS, Iqbal P (2005) Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. J Med Chem 48:7615–7622. https://doi.org/10.1021/jm050602z

    Article  CAS  PubMed  Google Scholar 

  22. Patel DS, Bharatam PV (2009) NovelN (← L) 2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chem Commun 1064-6. https://doi.org/10.1039/B816595E

  23. Patel DS, Bharatam PV (2011) Divalent N (I) compounds with two lone pairs on nitrogen. J Phy Chem A 115:7645–7655. https://doi.org/10.1021/jp111017u

    Article  CAS  Google Scholar 

  24. Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK et al (2016) Design, synthesis, and structural analysis of divalent NI compounds and identification of a new electron-donating ligand. Chem Euro J 22:1088–1096. https://doi.org/10.1002/chem.201503618

    Article  CAS  Google Scholar 

  25. Patel N, Arfeen M, Singh T, Bhagat S, Sakhare A, Bharatam PV (2020) Divalent NI compounds: identifying new carbocyclic carbenes to design nitreones using quantum chemical methods. J Comput Chem 41:2624–2633. https://doi.org/10.1002/jcc.26417

    Article  CAS  Google Scholar 

  26. Bhatia S, Malkhede YJ, Bharatam PV (2013) Existence of dynamic tautomerism and divalent N (I) character in N-(pyridin-2-yl) thiazol-2-amine. J Comput Chem 34:1577–1588. https://doi.org/10.1002/jcc.23293

    Article  CAS  PubMed  Google Scholar 

  27. Bhagat S, Arfeen M, Das G, Patel N, Bharatam PV (2019) Electronic and ligating properties of carbocyclic carbenes: a theoretical investigation. J Comput Chem 40:726–733. https://doi.org/10.1002/jcc.25756

    Article  CAS  Google Scholar 

  28. Wanjari PJ, Singh T, Sofi F, Bharatam PV (2021) Quantum chemical study in exploring the role of donor→ acceptor interactions in 1, 3-bis carbene-stabilized guanidinium cations. J Mole Model 27:1–10. https://doi.org/10.1007/s00894-021-04707-2

    Article  CAS  Google Scholar 

  29. Dar MO, Dubey G, Singh T, Bharatam PV (2022) N-heterocyclic carbene ligated oximes: exploring the electronic structure and properties. Int J Quantum Chem 122:e26907. https://doi.org/10.1002/qua.26907

    Article  CAS  Google Scholar 

  30. Singh S, Wanjari PJ, Bhatia S, Sonwane VC, Chakraborti AK, Bharatam PV (2015) Design, synthesis, biological evaluation and toxicity studies of N, N-disubstituted biguanides as quorum sensing inhibitors. Med Chem Res 24:1974–1987. https://doi.org/10.1007/s00044-014-1255-y

    Article  CAS  Google Scholar 

  31. Singh T, George A, Parameswaran P, Bharatam PV (2019) Enols, diamino enols, and breslow intermediates: a comparative quantum chemical analysis. Eur J Org Chem 2019:2481–2489. https://doi.org/10.1002/ejoc.201801817

    Article  CAS  Google Scholar 

  32. Singh T, Sahoo SC, Bharatam PV (2021) Compound with possible N→ N coordination bond: synthesis, crystal structure and electronic structure analysis. Tet Lett 77:153246. https://doi.org/10.1016/j.tetlet.2021.153246

    Article  CAS  Google Scholar 

  33. Arfeen M, Patel DS, Abbat S, Taxak N, Bharatam PV (2014) Importance of cytochromes in cyclization reactions: quantum chemical study on a model reaction of proguanil to cycloguanil. J Comput Chem 35:2047–2055. https://doi.org/10.1002/jcc.23719

    Article  CAS  PubMed  Google Scholar 

  34. Dubey G, Mahawa N, Singh T, Saha N, Sahoo SC, Bharatam PV (2022) Thiazetidin-2- ylidenes as four membered N-heterocyclic carbenes: theoretical studies and the generation of complexes with N+ center. Phys Chem Chem Phys 24:629–633. https://doi.org/10.1039/D1CP04732A

    Article  CAS  PubMed  Google Scholar 

  35. Patel DS, Bharatam PV (2011) To bend or not to bend! The dilemma of allenes. J Org Chem 76:2558–2567. https://doi.org/10.1021/jo102432a

    Article  CAS  PubMed  Google Scholar 

  36. Singh T, Bharatam PV (2019) Donor→ acceptor coordination interactions in 1, 3-bis (NHC) triazenyl cations: an electronic structure analysis. J Comput Chem 40:2207–2215. https://doi.org/10.1002/jcc.25872

    Article  CAS  PubMed  Google Scholar 

  37. Bhagat S, Arfeen M, Adane L, Singh S, Singh PP, Chakraborti AK et al (2017) Guanylthiourea derivatives as potential antimalarial agents: synthesis, in vivo and molecular modelling studies. Eur J Med Chem 135:339–348. https://doi.org/10.1016/j.ejmech.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  38. Adane L, Bhagat S, Arfeen M, Bhatia S, Sirawaraporn R, Sirawaraporn W et al (2014) Design and synthesis of guanylthiourea derivatives as potential inhibitors of Plasmodium falciparum dihydrofolate reductase enzyme. Bioorg Med Chem Lett 24:613–617. https://doi.org/10.1016/j.bmcl.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  39. Adane L, Bharatam PV (2011) Computer-aided molecular design of 1H-imidazole-2, 4- diamine derivatives as potential inhibitors of Plasmodium falciparum DHFR enzyme. J Mol Model 17:657–667. https://doi.org/10.1007/s00894-010-0756-y

    Article  CAS  PubMed  Google Scholar 

  40. Bhagat S, Arfeen M, Das G, Ramkumar M, Khan SI, Tekwani BL et al (2019) Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioor Chemistry. 91:103094. https://doi.org/10.1016/j.bioorg.2019.103094

    Article  CAS  Google Scholar 

  41. Mehdi A, Adane L, Patel DS, Bharatam PV (2010) Electronic structure and reactivity of guanylthiourea: a quantum chemical study. J Comput Chem 31:1259–1267. https://doi.org/10.1002/jcc.21412

    Article  CAS  PubMed  Google Scholar 

  42. Patel N, Arfeen M, Sood R, Khullar S, Chakraborti AK, Mandal SK et al (2018) Can remote N-heterocyclic carbenes coordinate with main group elements? Synthesis, structure, and quantum chemical analysis of N+centered complexes. Chem Eur J 24:6418–6425. https://doi.org/10.1002/chem.201705999

    Article  CAS  PubMed  Google Scholar 

  43. Patel N, Sood R (2018) Bharatam PV NL2+ systems as new-generation phase-transfer catalysts. Chem Rev 118:8770–8785. https://doi.org/10.1021/acs.chemrev.8b00169

    Article  CAS  PubMed  Google Scholar 

  44. Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV (2021) Mesoionic and N-heterocyclic carbenes coordinated N+ center: experimental and computational analysis. ChemPlusChem 86:1416–1420. https://doi.org/10.1002/cplu.202100281

    Article  CAS  PubMed  Google Scholar 

  45. Bhatia S, Bagul C, Kasetti Y, Patel DS, Bharatam PV (2012) Divalent N (I) character in 2- (thiazol-2-yl) guanidine: an electronic structure analysis. J Phy Chem A 116:9071–9079. https://doi.org/10.1021/jp304789u

    Article  CAS  Google Scholar 

  46. Patel N, Falke B, Bharatam PV (2018) C→ N coordination bonds in (CCC)→ N+←(L) complexes. Theor Chem Acc 137:1–10. https://doi.org/10.1007/s00214-018-2208-1

    Article  CAS  Google Scholar 

  47. Bhatia S, Bharatam PV (2014) Possibility of the existence of donor–acceptor interactions in bis (azole) amines: an electronic structure analysis. J Org Chem 79:4852–4862. https://doi.org/10.1021/jo402862r

    Article  CAS  PubMed  Google Scholar 

  48. Kathuria D, Arfeen M, Bankar AA, Bharatam, (2016) PV Carbene→ N+ coordination bonds in drugs: a quantum chemical study. J Chem Sci 128:1607–1614. https://doi.org/10.1007/s12039-016-1173-2

    Article  CAS  Google Scholar 

  49. Lokhande K, Venkateswara NNK, S, Pawar S. (2022) Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. J Biomol Struct Dyn 40:4376–4388. https://doi.org/10.1080/07391102.2020.1858165

    Article  CAS  PubMed  Google Scholar 

  50. Didziapetris R, Dapkunas J, Sazonovas A, Japertas P (2010) Trainable structure–activity relationship model for virtual screening of CYP3A4 inhibition. J Comput Aided Mol Des 24:891–906. https://doi.org/10.1007/s10822-010-9381-1

    Article  CAS  PubMed  Google Scholar 

  51. Crivori P, Zamora I, Speed B, Orrenius C, Poggesi I (2004) Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates. J Comput Aided Mol Des 18:155–166. https://doi.org/10.1023/B:JCAM.0000035184.11906.c2

    Article  CAS  PubMed  Google Scholar 

  52. Kriegl JM, Arnhold T, Beck B, Fox T (2005) A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 19:189–201. https://doi.org/10.1007/s10822-005-3785-3

    Article  CAS  PubMed  Google Scholar 

  53. Cherkaoui-Malki M, Meyer K, Cao WQ, Latruffe N, Yeldandi AV, Rao MS et al (2001) Identification of novel peroxisome proliferator-activated receptor α (PPARα) target genes in mouse liver using cDNA microarray analysis. Gene Expr J Liver Res 9:291–304. https://doi.org/10.3727/000000001783992533

    Article  CAS  Google Scholar 

  54. Shaikh F, Bhakat S, Thakur A, Radadia A, Soliman ES, M, Shah A, (2015) Identification of novel GSK1070916 analogs as potential aurora b inhibitors: insights from molecular dynamics and MM/GBSA based rescoring. Lett Drug Des & Discov 12:2–13

    Article  CAS  Google Scholar 

  55. Patel DC, Hausman KR, Arba M, Tran A, Lakernick PM, Wu C (2022) Novel inhibitors to ADP ribose phosphatase of SARS-CoV-2 identified by structure-based high throughput virtual screening and molecular dynamics simulations. Comput Biol Med 140:105084. https://doi.org/10.1016/j.compbiomed.2021.105084

    Article  CAS  Google Scholar 

  56. Lokhande K, Venkateswara NNK, S, Pawar S, (2022) Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. J Biomol Struct Dyn 40:4376–4388. https://doi.org/10.1080/07391102.2020.1858165

    Article  CAS  PubMed  Google Scholar 

  57. Rajagopal K, Byran G, Jupudi S, Vadivelan R (2020) Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): an in silico approach. Int J Health Allied Sci 9:43–50. https://doi.org/10.4103/ijhas.IJHAS_55_20

    Article  Google Scholar 

  58. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  59. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of dockingm accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  60. Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101:89–98. https://doi.org/10.1016/j.addr.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deng N, Forli S, He P, Perryman A, Wickstrom L, Vijayan R et al (2015) Distinguishing binders from false positives by free energy calculations: fragment screening against the flap site of HIV protease. J Phys Chem B 119:976–988. https://doi.org/10.1021/jp506376z

    Article  CAS  PubMed  Google Scholar 

  62. Rego CM, Francisco AF, Boeno CN, Paloschi MV, Lopes JA, Silva MD et al (2022) Inflammasome NLRP3 activation induced by convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci Rep 12:4706. https://doi.org/10.1038/s41598-022-08735-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lima AdM, Siqueira AS, Möller MLS, Souza RCd, Cruz JN, Lima ARJ, et al (2022) In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J Biomol Struct Dyn, 40 1064-73. https://doi.org/10.1080/07391102.2020.1821782

  64. Almeida VM, Dias ÊR, Souza BC, Cruz JN, Santos CB, Leite FH et al (2022) Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J Biomol Struct Dyn 40:7574–7583. https://doi.org/10.1080/07391102.2021.1900916

    Article  CAS  PubMed  Google Scholar 

  65. Muzammil S, Neves Cruz J, Mumtaz R, Rasul I, Hayat S, Khan MA et al (2023) Effects of drying temperature and solvents on in vitro diabetic wound healing potential of moringa oleifera leaf extracts. Molecules 28:710. https://doi.org/10.3390/molecules28020710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Department of Biotechnology, Government of India for financial support (grant number: BT/PR140164); SERB, Department of Science and Technology, Government of India for funding (PDF/2020/002825).

Author information

Authors and Affiliations

Authors

Contributions

Pravin J. Wanjari: revised the manuscript critically and wrote the manuscript, Asutosh Rath: execution of idea, Rohit Y. Sathe: revised the manuscript critically, and Prasad V. Bharatam: generation of idea, analysis, and revised it critically.

Corresponding author

Correspondence to Prasad V. Bharatam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanjari, P.J., Rath, A., Sathe, R.Y. et al. Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach. J Mol Model 29, 156 (2023). https://doi.org/10.1007/s00894-023-05538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05538-z

Keywords

Navigation