Skip to main content
Log in

Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol−1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol−1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ben-Naim A (2006) Molecular theory of solutions. Oxford University Press, New York

    Google Scholar 

  2. Truhlar DG, Pliego JR Jr (2007) Transition state theory and chemical reaction dynamics in solution. In: Mennucci B, Cammi R (eds) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chippenham, pp 338–365

    Google Scholar 

  3. Soteras I, Blanco D, Huertas O, Bidon-Chanal A, Luque FJ (2007) Solvent effects on chemical equilibria. In: Mennucci B, Cammi R (eds) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chippenham, pp 323–337

    Google Scholar 

  4. Mobley D, Wymer K, Lim N, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28:135–150

    Article  CAS  Google Scholar 

  5. Guthrie JP (2014) SAMPL4, a blind challenge for computational solvation free energies: the compounds considered. J Comput Aided Mol Des 28:151–168

    Article  CAS  Google Scholar 

  6. Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113:4501–4507

    Article  CAS  Google Scholar 

  7. Sandberg L (2014) Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge. J Comput Aided Mol Des 28:211–219

    Article  CAS  Google Scholar 

  8. Manzoni F, Söderhjelm P (2014) Prediction of hydration free energies for the SAMPL4 data set with the AMOEBA polarizable force field. J Comput Aided Mol Des 28:235–244

    Article  CAS  Google Scholar 

  9. König G, Pickard FIV, Mei Y, Brooks B (2014) Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4. J Comput Aided Mol Des 28:245–257

    Article  Google Scholar 

  10. Fu J, Liu Y, Wu J (2014) Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory. J Comput Aided Mol Des 28:299–304

    Article  CAS  Google Scholar 

  11. Beckstein O, Fourrier A, Iorga B (2014) Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 28:265–276

    Article  CAS  Google Scholar 

  12. Sulea T, Wanapun D, Dennis S, Purisima EO (2009) Prediction of SAMPL-1 hydration free energies using a continuum electrostatics-dispersion model†. J Phys Chem B 113:4511–4520

    Article  CAS  Google Scholar 

  13. Nicholls A, Wlodek S, Grant JA (2009) The SAMP1 solvation challenge: further lessons regarding the pitfalls of parametrization†. J Phys Chem B 113:4521–4532

    Article  CAS  Google Scholar 

  14. Mobley DL, Bayly CI, Cooper MD, Dill KA (2009) Predictions of hydration free energies from all-atom molecular dynamics simulations. J Phys Chem B 113:4533–4537

    Article  CAS  Google Scholar 

  15. Marenich AV, Cramer CJ, Truhlar DG (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543

    Article  CAS  Google Scholar 

  16. Klamt A, Eckert F, Diedenhofen M (2009) Prediction of the free energy of hydration of a challenging set of pesticide-like compounds†. J Phys Chem B 113:4508–4510

    Article  CAS  Google Scholar 

  17. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  18. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  19. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) Self-consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges. J Chem Theory Comput 3:2011–2033

    Article  CAS  Google Scholar 

  20. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  21. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  22. Curutchet C, Orozco M, Luque FJ, Mennucci B, Tomasi J (2006) Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model. J Comput Chem 27:1769–1780

    Article  CAS  Google Scholar 

  23. Klamt A, Eckert F (2000) COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib 172:43–72

    Article  CAS  Google Scholar 

  24. Pomogaeva A, Chipman DM (2013) Hydration energy from a composite method for implicit representation of solvent. J Chem Theory Comput 10:211–219

    Article  Google Scholar 

  25. Chipman DM (2004) Solution of the linearized Poisson–Boltzmann equation. J Chem Phys 129:5566–5575

    Article  Google Scholar 

  26. Chipman DM (2002) Energy correction to simulation of volume polarization in reaction field theory. J Chem Phys 116:10129–10138

    Article  CAS  Google Scholar 

  27. Reichardt C (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley-VHC, Weinheim

    Google Scholar 

  28. Takenouchi M, Kato R, Nishiumi H (2001) Henry’s law constant measurements of CCl2F2, CHClF2, CH2F2, C2ClF5, C2HF5, CH2FCF3, and CH3CHF2 in methanol, ethanol, and 2-propanol. J Chem Eng Data 46:746–749

    Article  CAS  Google Scholar 

  29. Miyano Y, Nakanishi K, Fukuchi K (2003) Henry’s constants of butane, isobutane, 1-butene and isobutene in methanol at 255–320 K. Fluid Phase Equilib 208:223–238

    Article  CAS  Google Scholar 

  30. Miyano Y, Fukuchi K (2004) Henry’s constants of propane, propene, trans-2-butene and 1,3-butadiene in methanol at 255–320 K. Fluid Phase Equilib 226:183–187

    Article  CAS  Google Scholar 

  31. Miyano Y, Kobashi T, Shinjo H, Kumada S, Watanabe Y, Niya W, Tateishi Y (2006) Henry’s law constants and infinite dilution activity coefficients of cis-2-butene, dimethylether, chloroethane, and 1,1-difluoroethane in methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-methyl-2-butanol. J Chem Thermodyn 38:724–731

    Article  CAS  Google Scholar 

  32. Linstrom PJ, Mallard WG (2013) NIST chemistry webbook, NIST Standard Reference Database Number 69

  33. Vega A, Coca J (1990) Activity coefficients at infinite dilution of organic compounds in acetonitrile and methanol by liquid chromatography. J Liq Chromatogr 13:789–801

    Article  CAS  Google Scholar 

  34. Topphoff M, Gruber D, Gmehling J (1999) Measurement of activity coefficients at infinite dilution using gas–liquid chromatography. 10. Results for various solutes with the stationary phases dimethyl sulfoxide, propylene carbonate, and N-ethylformamide. J Chem Eng Data 44:1355–1359

    Article  CAS  Google Scholar 

  35. Xu X, Zhang Q, Muller RP, Goddard WA III (2005) An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. J Chem Phys 122:014105–014114

    Article  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  37. Higashi M, Marenich AV, Olson RM, Chamberlin AC, Pu J, Kelly CP, Thompson JD, Xidos JD, Li J, Zhu T, Hawkins GD, Chuang Y-Y, Fast PL, Lynch BJ, Liotard DA, Rinaldi D, Gao J, Cramer CJ, Truhlar DG (2010) GAMESSPLUS—version 2010-2. In. University of Minnesota, Minneapolis

    Google Scholar 

  38. Pliego JR, Miguel ELM (2013) Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster–continuum approach. J Phys Chem B 117:5129–5135

    Article  CAS  Google Scholar 

  39. Pliego JR Jr, Riveros JM (2002) Gibbs energy of solvation of organic ions in aqueous and dimethyl sulfoxide solutions. Phys Chem Chem Phys 4:1622–1627

    Article  CAS  Google Scholar 

  40. Parker AJ (1969) Protic-Dipolar aprotic solvent effects on rates of bimolecular reactions. Chem Rev 69:1

    Article  CAS  Google Scholar 

  41. Pliego JR Jr, Riveros JM (2001) The cluster–continuum model for the calculation of the solvation free energy of ionic species. J Phys Chem A 105:7241–7247

    Article  CAS  Google Scholar 

  42. Miguel ELM, Silva PL, Pliego JR (2014) Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines. J Phys Chem B 118:5730–5739

    Article  CAS  Google Scholar 

  43. Pliego JR Jr (2011) Shells theory of solvation and the long-range Born correction. Theor Chem Acc 128:275–283

    Article  CAS  Google Scholar 

  44. de Lima GF, Duarte HA, Pliego JR Jr (2010) Dynamical discrete/continuum linear response shells theory of solvation: convergence test for NH4+ and OH− ions in water solution using DFT and DFTB methods. J Phys Chem B 114:15941–15947

    Article  Google Scholar 

  45. Sunoj RB, Anand M (2012) Microsolvated transition state models for improved insight into chemical properties and reaction mechanisms. Phys Chem Chem Phys 14:12715–12736

    Article  CAS  Google Scholar 

  46. Ho J, Coote ML (2010) A universal approach for continuum solvent pK(a) calculations: are we there yet? Theor Chem Acc 125:3–21

    Article  CAS  Google Scholar 

  47. Reinisch J, Klamt A (2014) Prediction of free energies of hydration with COSMO-RS on the SAMPL4 data set. J Comput Aided Mol Des 28:169–173

    Article  CAS  Google Scholar 

  48. Chastrette M, Rajzmann M, Chanon M (1985) Approach to a general classification of solvents using a multivariate statistical treatment of quantitative solvent parameters. J Am Chem Soc 107:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the agencies CNPq, FAPEMIG and CAPES for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefredo R. Pliego Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanith, C.C., Pliego, J.R. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile. J Comput Aided Mol Des 29, 217–224 (2015). https://doi.org/10.1007/s10822-014-9814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9814-3

Keywords

Navigation