Skip to main content

Advertisement

Log in

Incorporating partial matches within multiobjective pharmacophore identification

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper describes the extension of our earlier multiobjective method for generating plausible pharmacophore hypotheses to incorporate partial matches. Diverse sets of molecules rarely adopt exactly the same binding mode, and so allowing the identification of partial matches allows our program to be applied to larger and more diverse datasets. The method explores the conformational space of a series of ligands simultaneously with their alignment using a multiobjective genetic algorithm (MOGA). The principles of Pareto ranking are used to evolve a diverse set of pharmacophore hypotheses that are optimised on conformational energy of the ligands, the goodness of the overlay and the volume of the overlay. A partial match is defined as a pharmacophoric feature that is present in at least two, but not all, of the ligands in the set. The number of ligands that map to a given pharmacophore point is taken into account when evaluating an overlay. The method is applied to a number of test cases extracted from the Protein Data Bank (PDB) where the true overlay is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Güner OF (ed) (2000) Pharmacophore perception, development and use in drug design. International University Line, La Jolla, CA

  2. Jones G, Willett P, Glen RC (1995) J Comput Aided Mol Des 9:532

    Article  CAS  Google Scholar 

  3. Barnum D, Greene J, Smellie A, Sprague P (1996) J Chem Inf Comput Sci 36:563

    Article  CAS  Google Scholar 

  4. Martin YC, Bures MG, Danaher EA, Delazzer J, Lico I, Pavlik PA (1993) J Comput Aided Mol Des 7:83

    Article  CAS  Google Scholar 

  5. Patel Y, Gillet VJ, Bravi G, Leach AR (2002) J Comput Aided Mol Des 16:653

    Article  CAS  Google Scholar 

  6. van Drie JH (2003) Curr Pharm Design 9:1649

    Article  Google Scholar 

  7. Richmond NJ, Willett P, Clark RD (2004) J Mol Graphics Model 23:199

    Article  CAS  Google Scholar 

  8. Feng J, Sanil A, Young SS (2006) J Chem Inf Model 46:1352

    CAS  Google Scholar 

  9. Cottrell SJ, Gillet VJ, Taylor R, Wilton DJ (2004) J Comput Aided Mol Des 18:665

    Article  CAS  Google Scholar 

  10. Galahad. Tripos Inc. (1699) South Hanley Rd, St. Louis, Missouri, 63144, USA

  11. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Wokingham, Addison-Wesley

    Google Scholar 

  12. Fonseca CM, Fleming PJ (1998) IEEE Trans Syst Man Cybern A – Syst Humans 28:26

    Article  Google Scholar 

  13. Handschuh S, Wagener M, Gasteiger J (1998) J Chem Inf Comput Sci 32:220

    Article  Google Scholar 

  14. Gillet VJ, Khatib W, Willett P, Fleming PJ, Green DVS (2002) J Chem Inf Comput Sci 42:375

    Article  CAS  Google Scholar 

  15. Nicolotti O, Gillet VJ, Fleming PJ, Green DVS (2002) J Med Chem 45:5069

    Article  CAS  Google Scholar 

  16. Brown N, McKay B, Gasteiger J (2004) J Comput Aided Mol Des 18:761

    Article  CAS  Google Scholar 

  17. Catalyst. Accelrys, 9685 Scranton Road, San Diego, CA 92121, USA

  18. Berman HM, Battistuz T, Bhat TN, Blum WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) Acta Crystallogr D58:899

    CAS  Google Scholar 

  19. Sutcliffe MJ, Haneef I, Carney D, Blundell TL (1987) Protein Eng 1:377

    Article  CAS  Google Scholar 

  20. Kabsch W (1976) Acta Crystallogr A 32:922

    Article  Google Scholar 

  21. Raymond JW, Willett P (2003) J Chem Inf Comput Sci 43:908

    Article  CAS  Google Scholar 

  22. Supuran CT, Scozzafava A (2002) Expert Opin Therapeut Patents 12:217

    Article  CAS  Google Scholar 

  23. Hendlich M, Bergner A, Gunther J, Klebe G (2003) J Mol Biol 326:607

    Article  CAS  Google Scholar 

  24. Tu CK, Silverman DN, Forsman C, Jonsson BH, Lindskog S (1989) Biochemistry 28:7913

    Article  CAS  Google Scholar 

  25. Abbate F, Supuran CT, Scozzafava A, Orioli P, Stubbs MT, Klebe G (2002) J Med Chem 45:3583

    Article  CAS  Google Scholar 

  26. Sielecki TM, Boylan JF, Benfield PA, Trainor GL (2000) J Med Chem 43:1

    Article  CAS  Google Scholar 

  27. Davies TG, Bentley J, Arris CE, Boyle FT, Curtin NJ, Endicott JA, Gibson AE, Golding BT, Griffin RJ, Hardcastle IR, Jewsbury P, Johnson LN, Mesguiche V, Newell DR, Noble MEM, Tucker JA, Wang L, Whitfield H (2002) J Nat Struct Biol 9:745

    Google Scholar 

  28. Mestres J, Rohrer DC, Maggiora GM (1997) J Comput Chem 18:934

    Article  CAS  Google Scholar 

  29. Gerber PR, Muller K (1987) Acta Crystallogr A 43:426

    Article  Google Scholar 

  30. Kearsley SK (1990) J Comput Chem 11:1187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Gillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottrell, S.J., Gillet, V.J. & Taylor, R. Incorporating partial matches within multiobjective pharmacophore identification. J Comput Aided Mol Des 20, 735–749 (2006). https://doi.org/10.1007/s10822-006-9086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9086-7

Keywords

Navigation