Skip to main content
Log in

Static and dynamic properties of the water/amorphous silica interface: a model for the undissociated surface

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

Amorphous silica–water interfaces are found ubiquitously in nanoscale devices, including devices fabricated from silica as well as from silicon that acquire a surface oxide layer. The surface silanol groups serve as hydrogen-bonding sites for a variety of chemical species, and their reactivity enables convenient chemical modification, making silica surfaces strategic in bio-sensing applications. We have extended the popular BKS and SPC/E models for bulk silica and water to describe the hydrated, hydroxylated amorphous silica surface. The parameters of our model were determined using ab initio quantum chemical studies on small fragments. Our model will be useful in empirical potential studies, and as a starting point for ab initio molecular dynamics calculations. At this stage, we present a model for the undissociated surface. Our calculated value for the heat of immersion, 0.6Jm−2, falls within the range of reported experimental values of 0.2–0.8Jm−2. We also study the perturbation of water properties near the silica–water interface. The disordered surface is characterized by regions that are hydrophilic and hydrophobic, depending on the statistical variations in silanol group density. We report non-equilibrium molecular dynamics simulations of Poiseuille flow of water near an amorphous silica surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Beest B.W.H., Kramer G.J., van Santen R.A. (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64(16): 1955–1958

    Article  Google Scholar 

  2. Berendsen H.J.C., Grigera J.R., Straatsma T.P. (1987) The missing term in effective pair Potentials. J. Phys. Chem. 91(24): 6269–6271

    Article  CAS  Google Scholar 

  3. Vessal B. (1994) Simulation studies of silicates and phosphates. J. Non-Crystalline Solids 177(1): 103–124

    Article  CAS  Google Scholar 

  4. Smith W., Greaves G.N., Gillan M.J. (1995) Computer simulation of sodium disilicate glass. J. Chem. Phys. 103(8): 3091–3097

    Article  CAS  Google Scholar 

  5. Møller C., Plesset M. (1934) Note on an approximation treatment for many-electron systems. Phys. Rev. 46(7): 618–622

    Article  Google Scholar 

  6. Bartlett R.J., Silver D.M. (1974) Correlation energy in lithium hydride, boron monohydride, and hydrogen fluoride with many-body perturbation theory using slater-type atomic orbitals. Int. J. Quantum Chem. Symp. 8: 271–276

    CAS  Google Scholar 

  7. Binkley J.S., Pople J.A. (1975) Moeller-Plesset theory for atomic ground state energies. Int. J. Quantum Chem. 9(2): 229–236

    Article  CAS  Google Scholar 

  8. Bartlett R.J., Silver D.M. (1975) Diagrammatic perturbation theory. Int. J. Quantum Chem. Symp. 9: 183–198

    Article  CAS  Google Scholar 

  9. Pople, J.A., Binkley, J.S., Seeger, R.: Theoretical models incorporating electron correlation. Int. J. Quantum Chem. Symp. 10(1) (1976)

  10. Hassanali, A.A., Singer, S.J.: A model for the water/amorphous silica interface: The undissociated surface. J. Phys. Chem. B (accepted for publication pending revisions) (2006)

  11. Saengsawang O., Remsungnen T., Frizsche S., Haberlandt R., Hannongbua S. (2005) Structure and energetics of water-silanol binding on the surface of silicalite-1: Quantum chemical calculations. J. Phys.Chem. B 109(12): 5684–5690

    Article  CAS  Google Scholar 

  12. Smith W., Forester T.R. (1996) DL POLY 2.0: A general-purpose parallel molecular dynamics simulation package J. Mol. Graph. 14(3): 136–141

    Article  CAS  Google Scholar 

  13. Ryckaert J.-P., Ciccotti G., Berendsen H.J.C. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J. Comp. Phys. 23(3): 327–341

    Article  CAS  Google Scholar 

  14. Darden T., York D., Pedersen L. (1993) Particle mesh Ewald: An n ln (n) method for Ewald sums in large systems. J. Chem. Phys. 98(12): 10089–10092

    Article  CAS  Google Scholar 

  15. Perera U.E.L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103(19): 8577–8593

    Article  Google Scholar 

  16. Roder A., Kob W., Binder K. (2001) Structure and dynamics of amorphous silica surfaces. J. Chem. Phys. 114(17): 7602–7614

    Article  CAS  Google Scholar 

  17. Rarivomanantsoa M., Jund P., Jullien R. (2001) Classical molecular dynamics simulations of amorphous silica surfaces. J. Phys. Condens. Matter, 13(31): 6707–6718

    Article  CAS  Google Scholar 

  18. Ceresoli D., Bernasconi M., Iarlori S., Parrinello M., Tosatti E. (2000) Two-membered silicon rings on the dehydroxylated surface of silica. Phys. Rev. Lett. 84(17): 3887–3890

    Article  CAS  Google Scholar 

  19. Bakos, T., Rashkeev, S.N., Pantiledes, S.T.: Reactions and diffusion of water and oxygen molecules in amorphous SiO2. Phys. Rev. Lett. 88(5): 55508-1–55508-4 (2002)

    Google Scholar 

  20. Masini P., Bernasconi M. (2002) J. Phys.: Ab initio simulations of hydroxylation and dehydroxylation reactions at surfaces: amorphous silica and brucite. Condens. Matter, 14(16): 4133–4144

    Article  CAS  Google Scholar 

  21. Du M.-H., Kolchin A., Cheng H.-P. (2003) Water-silica surface interactions: A combined quantum classical molecular dynamic study of energetics and reaction pathways. J. Chem. Phys. 119(13): 6418–6422

    Article  CAS  Google Scholar 

  22. Mischler C., Horbach J., Kob W., Binder K. (2005) Water adsorption on amorphous silica surfaces: a Car-Parrinello simulation study. J. Phys. Condens. Matter, 17(26): 4005–4013

    Article  CAS  Google Scholar 

  23. Rignanese G.-M., Charlier J.-C., Gonze X. (2004) First-principles molecular dynamics investigation of the hydration mechanisms of the (0001) α-quartz surface. Phys. Chem. Chem. Phys. 6(8): 1920–1925

    Article  CAS  Google Scholar 

  24. Walsh T.R., Wilson M., Sutton A.P. (2000) Hydrolysis of the amorphous silica surface. II. Calculation of activation barriers and mechanisms. J. Chem. Phys. 113(20): 9191–9201

    Article  CAS  Google Scholar 

  25. Iler R.K. (1979) The Chemistry of Silica. Wiley, New York

    Google Scholar 

  26. Zhuravlev L.T. (1989) Structurally bound water and surface characterization of amorphous silica. Pure Appl. Chem. 61(11): 1969–1976

    Article  CAS  Google Scholar 

  27. Ong S., Zhao X., Eisenthal K.B. (1992) Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 191(3–4): 327–335

    Article  CAS  Google Scholar 

  28. Fisk J.D., Batten R., Jones G., O’Reilly J.P., M.Shaw A. (2005) pH dependence of the crystal violet adsorption isotherm at the silica-water interface. J. Phys. Chem. B109(30): 14475–14480

    Article  CAS  Google Scholar 

  29. Chuang I.-S., Kinney D.R., Maciel G.E. (1993) Interior hydroxyls of the silica gel system as studied by 29Si CP-MAS NMR spectroscopy. J. Am. Chem. Soc. 115(19): 8695–8705

    Article  CAS  Google Scholar 

  30. Chuang I.-S., Maciel G.E. (1996) Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics. J. Am. Chem. Soc. 118(2): 401–406

    Article  CAS  Google Scholar 

  31. Chuang I.-S., Maciel G.E. (1997) A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces. J. Phys. Chem. B101(16): 3052–3064

    Article  CAS  Google Scholar 

  32. Taylor J.A.G., Hockey J.A. (1966) Heats of immersion in water of characterized silicas of varying specific area. J. Phys. Chem. 70(7): 2169–2172

    Article  CAS  Google Scholar 

  33. Taylor J.A.G., Hockey J.A., Pethica B.A. (1965) The silica-water interface. Proc. Br. Ceramic Soc. 5: 133–141

    Google Scholar 

  34. Makrides A.C., Hackerman N. (1958) Heat of immersion. I. The system silica-water. J. Phys. Chem. 63(4): 594–598

    Article  Google Scholar 

  35. Takei T., Chikazawa M. (1998) Origin of differences in heats of immersion of silicas in water. J. Colloid Interface Sci. 208(2): 570–574

    Article  CAS  Google Scholar 

  36. Takei T., Eriguchi E., Fuji M., Watanabe T., Chikazawa M. (1998) Heat of immersion of amorphous and crystalline silicas in water: effect of crystallinity. Themochimia. Acta, 308(1–2): 139–145

    Article  CAS  Google Scholar 

  37. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8): 3684–3690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherwin J. Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanali, A.A., Singer, S.J. Static and dynamic properties of the water/amorphous silica interface: a model for the undissociated surface. J Computer-Aided Mater Des 14, 53–63 (2007). https://doi.org/10.1007/s10820-006-9038-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9038-5

Keywords

Navigation