Skip to main content
Log in

Detailed parametric study of Casimir forces in the Casimir Polder approximation for nontrivial 3D geometries

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

We present a parametric numerical study conducted with the finite element code CasimirSim developed by ARC Seibersdorf research. This simulation has already been applied to two dimensional geometries in the past and showed agreement with exact theoretical predictions between 100 nm and 10 μm. In the current investigation the code has been enhanced to compute arbitrary, nontrivial, fully three dimensional geometries for any material given by its density and dielectric polarizability. For calculation of the Casimir energy the simple Casimir Polder r −7 model is used. This approach is known to be of limited accuracy due to the assumption of perfect additivity of dipole interactions. Nonetheless, it can be used to give approximate predictions for sharply curved geometries inaccessible to other approximative schemes such as for example the established Proximity Force Approximation. In the current study, we show in detail the dependence of errors upon physical and numerical parameters. After verification with the plate–plate geometry experimentally relevant geometries such as sphere over plate or crossed cylinders are assessed. Finally, the simulation is applied to the more sophisticated geometries of stacked spherical shells, a gear wheel, and a cantilever, showing up some interesting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ħ :

Reduced Planck constant, 1.055 × 10−34 Js

c 0 :

Vacuum speed of light, 2.998 × 108 m/s

e :

Elementary charge, 1.602 × 10−19 C

\(\varepsilon_0\) :

Electric permittivity of vacuum, 8.854 × 10−12 F/m

References

  1. Tajmar M. (2004) Finite element simulation of Casimir forces in arbitrary geometries. Int. J. Modern Phys. C 15(10): 1387

    Article  Google Scholar 

  2. Casimir H.B.G., Polder D. (1948) The influence of retardation on the London-van der Waals forces. Phys. Rev. 38: 360

    Article  Google Scholar 

  3. Lisanti M., Iannuzzi D., Capasso F. (2005) Observation of the skin-depth effect on the Casimir force between metallic surfaces. PNAS 102(34): 11989

    Article  CAS  Google Scholar 

  4. Mostepanenko V.M., Trunov N.N. (1997) The Casimir effect and its applications. Oxford University Press, New York

    Google Scholar 

  5. Tasci E.S., Erkoc S. (2002) Simulation of the Casimir polder effect for various geometries. Int. J. Modern Phys. C 13: 979

    Article  CAS  Google Scholar 

  6. Klimchitskaya G.L., Mohideen U., Mostepanenko V.M. (2000) Casimir and van der Waals force between two plates or a sphere (lens) above a plate made of real metals. Phys. Rev. A 61: 062107

    Article  Google Scholar 

  7. Milton K.A. (2004) The Casimir effect: recent controversies and progress. J. Phys. A 37: R209 [preprint:hep-th/0406024]

    Article  Google Scholar 

  8. Lambrecht A., Reynaud S. (2000) Casimir force between metallic mirrors. Eur. Phys. J. D 8(3): 309

    Article  CAS  Google Scholar 

  9. Blocki J., Randrup J., Swiatecki W.J., Tsang C.F. (1977) Proximity forces. Ann. Phys. (NY) 105(2): 427

    Article  CAS  Google Scholar 

  10. Emig T., Jaffe R.L., Kardar M., Scardicchio A. (2006) Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 96: 080403 [preprint:cond-mat/0601055]

    Article  CAS  Google Scholar 

  11. Lamoreaux S.K. (1997) Demonstration of the Casimir force in the 0.6 to 6μm range. Phys. Rev. Lett. 78: 5

    Article  CAS  Google Scholar 

  12. Harris B.W., Chen F., Mohideen U. (2000) Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 62: 52109

    Article  Google Scholar 

  13. Decca R.S., Lopez D., Fischbach E., Krause D.E. (2003) Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 91: 5

    Article  Google Scholar 

  14. Boyer T.H. (1968) Quantum electromagnetic zero-point energy of a conducting spherical shell and the casimilar model for a charged particle. Phys. Rev. 174(5): 1764

    Article  Google Scholar 

  15. Gies H., Langfeld K., Moyaerts L. (2003) Casimir effect on the worldline. JHEP 6: 18

    Article  Google Scholar 

  16. Jaffe R.L., Scardicchio A. (2004) The Casimir effect and geometric optics. Phys. Rev. Lett. 92: 70402 [preprint:quant-ph/0310194]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sedmik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedmik, R., Vasiljevich, I. & Tajmar, M. Detailed parametric study of Casimir forces in the Casimir Polder approximation for nontrivial 3D geometries. J Computer-Aided Mater Des 14, 119–132 (2007). https://doi.org/10.1007/s10820-006-9026-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9026-9

Keywords

Navigation