Skip to main content

Advertisement

Log in

Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations

  • Published:
Journal of Bioeconomics Aims and scope

Abstract

Bio-economic modelling has become a useful tool for anticipating the outcomes of policies and technologies before their implementation. Advances in mathematical programming have made it possible to build more comprehensive models. In an overview of recent studies about bio-economic models applied to land-use problems in agriculture and forestry, we evaluated how aspects such as uncertainty, multiple objective functions, system dynamics and time have been incorporated into models. We found that single objective models were more frequently applied at the farm level, while multiple objective modelling has been applied to meet concerns at the landscape level. Among the objectives, social aspects are seldom represented in all models, when being compared to economic and environmental aspects. The integration of uncertainty is occasionally a topic, while stochastic approaches are more frequently applied than non-stochastic robust methods. Most multiple-objective models do not integrate uncertainty or sequential decision making. Static approaches continue to be more recurrent than truly dynamic models. Even though integrating multiple aspects may enhance our understanding of a system; it involves a tradeoff between complexity and robustness of the results obtained. Land-use models have to address this balance between complexity and robustness in order to evolve towards robust multiple-objective spatial optimization as a prerequisite to achieve sustainability goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Skewness measures the asymmetry of the probability density function around the mean. An increase in skewness to the right of the distribution implies a reduction in downside risk exposure. Greater negative skewness generates greater exposure to downside risk and higher positive skewness indicates less exposure to downside risk (Hildebrandt and Knoke 2011).

References

  • Acs, S., Berentsen, P. B. M., & Huirne, R. B. M. (2007). Conversion to organic arable farming in The Netherlands: A dynamic linear programming analysis. Agricultural Systems, 94, 405–415.

    Article  Google Scholar 

  • Acs, S., Berentsen, P., Huirne, R., & van Asseldonk, M. (2009). Effect of yield and price risk on conversion from conventional to organic farming. The Australian Journal of Agricultural and Resource Economics, 53, 393–411.

    Article  Google Scholar 

  • Alary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares, J. H., et al. (2016). Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agricultural Systems, 144, 33–45.

    Article  Google Scholar 

  • Anderson, L., & Seijo, J. C. (2009). Bioeconomics of fisheries management. New York: Wiley.

    Google Scholar 

  • Barbier, B., & Bergeron, G. (1999). Impact of policy interventions on land management in Honduras: Results of a bioeconomic model. Agricultural Systems, 60, 1–16.

    Article  Google Scholar 

  • Bateman, I. J., Harwood, A. R., Mace, G. M., Watson, R. T., Abson, D. J., Andrews, B., et al. (2013). Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science, 341, 45–50.

    Article  Google Scholar 

  • Blanco Fonseca, M., & Flichman, G., (2002). Dynamic optimization problems: different resolution methods regarding agriculture and natural resource economics. In Working Paper, Universidad Politecnica de Madrid and CIHEAM-Institut Agronomique Me’diterrane’en de Montpellier, Montpellier, p. 35.

  • Blasi, E., Passeri, N., Franco, S., & Galli, A. (2016). An ecological footprint approach to environmental-economic evaluation of farm results. Agricultural Systems, 145, 76–82.

    Article  Google Scholar 

  • Brown, D. R. (2000). A review of bio-economic models. Cornell African Food Security and Natural Resource Management (CAFSNRM) Program (Vol. 102)

  • Benitez, P., Kuosmanen, T., Olschewski, R., & van Kooten, C. (2006). Conservation payments under risk: A stochastic dominance approach. American Journal of Agricultural Economics, 88, 1–15.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88(3), 411–424.

    Article  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton and Oxford: Princeton University Press.

    Book  Google Scholar 

  • Behrendt, K., Cacho, O., Scott, J. M., & Jones, R. (2016). Using seasonal stochastic dynamic programming to identify optimal management decisions that achieve maximum economic sustainable yields from grasslands under climate risk. Agricultural Systems, 145, 13–23.

    Article  Google Scholar 

  • Beyer, H. G., & Sendhoff, B. (2007). Robust optimization–A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196, 3190–3218.

    Article  Google Scholar 

  • Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of Robust Optimization. Society for Industrial and Applied Mathematics SIAM Review, 53(3), 464–501.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Bradley, S., Hax, A., & Magnanti, T. (1977). Applied mathematical programming. Addison-Wesley.

  • Cao, K., Huang, B. O., Wang, S., & Lin, H. (2012). Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Computers, Environment and Urban Systems, 36, 257–269.

    Article  Google Scholar 

  • Carter Ingram, J., Redford, K. H., & Watson, J. E. M. (2012). Applying Ecosystem Services Approaches for Biodiversity Conservation: Benefits and Challenges. Sapiens, 5(1), 6.

    Google Scholar 

  • Clasen, C., Griess, V. C., & Knoke, T. (2011). Financial consequences of losing admixed tree species: A new approach to value increased financial risks by ungulate browsing. Forest Policy and Economics, 13, 503–511.

    Article  Google Scholar 

  • Caramia, M., & Dell’Olmo, P., (2008). Multi-objective optimization. In Multi-objective management in freight logistics (pp. 11–36). Springer, New York.

  • Castro, L. M., Calvas, B., Hildebrandt, P., & Knoke, T. (2013). Avoiding the loss of shade coffee plantations: How to derive conservation payments for risk-averse land-users. Agroforestry Systems, 87, 331–347.

    Article  Google Scholar 

  • Castro, L. M., Calvas, B., & Knoke, T. (2015). Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios. Plos One, 10(3). https://doi.org/10.1371/journal.pone.0120384.

  • Charnes, A., Cooper, W. W., & Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1(2), 138–151.

    Article  Google Scholar 

  • Charnes, A. (1977). Goal programming and multiple objective optimization. Part I. European Journal of Operational Research, 1, 39–54.

    Article  Google Scholar 

  • Chen, W., Carsjens, G. J., Zhao, L., & Li, H. (2015). A spatial optimization model for sustainable land use at regional level in China: A Case Study for Poyang Lake Region. Sustainability, 7, 35–55. https://doi.org/10.3390/su7010035.

  • Clark, C. W. (2006). Fisheries bioeconomics: Why is it so widely misunderstood? Population Ecology, 48(2), 95–98.

    Article  Google Scholar 

  • Cortez-Arriola, J., Groot, J., Rossing, W., Scholberg, J., Améndola Massiotti, R., & Tittonell, P. (2016). Alternative options for sustainable intensification of smallholder. Agricultural Systems, 144, 22–32.

    Article  Google Scholar 

  • Daily, G. C., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P. R., et al. (2000). The value of nature and the nature of value. Science, 289, 395–96.

    Article  Google Scholar 

  • Del Prado, A., Misselbrook, T., Chadwick, D., Hopkins, A., Dewhurst, R. J., Davison, P., et al. (2011). SIMSDAIRY: A modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimization. Science of the Total Environment, 409, 3993–4009.

    Article  Google Scholar 

  • Delmotte, S., Lopez-Ridaura, S., Barbier, J. M., & Wery, J. (2013). Prospective and participatory integrated assessment of agricultural systems from farm to regional scales: Comparison of three modelling approaches. Journal of Environmental Management, 129, 493–502.

    Article  Google Scholar 

  • De Wit, C. T. (1992). Resource use efficiency in agriculture. Agricultural Systems, 40, 125–151.

    Article  Google Scholar 

  • Di Falco, S., & Perrings, C. (2005). Crop biodiversity, risk management and the implications of agricultural assistance. Ecological Econonomics, 55, 459–466.

    Article  Google Scholar 

  • Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Doole, G. J., Marsh, D., & Ramilan, T. (2013). Evaluation of agri-environmental policies for reducing nitrate pollution from New Zealand dairy farms accounting for firm heterogeneity. Land Use Policy, 30, 57–66.

    Article  Google Scholar 

  • Estrella, R., Cattrysse, D., & Van Orshoven, J. (2014). Comparison of three ideal point-based multi-criteria decision methods for afforestation planning. Forests, 5(12), 3222–3240.

    Article  Google Scholar 

  • Eastman, J. R., Jiang, H., & Toledano, J. (1998). Multi-criteria and multi-objective decision making for land allocation using GIS. In E. Beinat & P. Nijkamp (Eds.), Multi-criteria analysis for land-use management (pp. 227–251). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Eyvindson, K., & Kangas, A. (2014). Using a compromise programming framework to integrating spatially specific preference information for forest management problems. Journal of Multi-Criteria Decision Analysis, 22, 3–15.

    Article  Google Scholar 

  • Finger, R., Lazzarotto, P., & Calanca, P. (2010). Bio-economic assessment of climate change impacts on managed grassland production. Agricultural Systems, 103(9), 666–674.

    Article  Google Scholar 

  • Flichman, G., Louhichi, K., & Boisson, J. M. (2011). Modelling the relationship between agriculture and the environment using bio-economic models: Some conceptual issues. Bio-economic models applied to agricultural systems (pp. 3–14). Berlin: Springer.

    Chapter  Google Scholar 

  • Flichman, G., & Allen, T. (2015). Bio-economic modelling: State-of-the-art and key priorities. Food and Agriculture Organization, United Nations. Accessed January 10, 2017.

  • Ford, A. (1999). Modelling the environment: An introduction to system dynamics models of environmental systems. Washington: Island Press.

    Google Scholar 

  • Gentle, J., Härdle, W. K., & Mori, Y. (2012). Handbook of computational statistics: Concepts and methods. Berlin: Springer.

    Book  Google Scholar 

  • Griess, V., & Knoke, T. (2013). Bioeconomic modelling of mixed Norway spruce–European beech stands: Economic consequences of considering ecological effects. European Journal of Forest Research, 132, 511–522.

    Article  Google Scholar 

  • Grigalunas, T., Opaluch, J. J., & Luo, M. (2001). The economic costs to fisheries from marine sediment disposal: Case study of providence. USA. Ecological Economics, 38(1), 47–58.

    Article  Google Scholar 

  • Groot, J. C. J., Rossing, W. A. H., Jellema, A., Stobbelaar, D. J., Renting, H., & Van Ittersum, M. K. (2007). Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality–A methodology to support discussions on land-use perspectives. Agriculture, Ecosystems and Environment, 120, 58–69.

    Article  Google Scholar 

  • Hadar, J., & Russell, W. R. (1969). Stochastic dominance and diversification. Journal of Economic Theory, 3, 288–305.

    Article  Google Scholar 

  • Härtl, F., Hahn, A., & Knoke, T. (2013). Risk-sensitive planning support for forest enterprises: The YAFO model. Computers and Electronics in Agriculture, 94, 58–70.

    Article  Google Scholar 

  • Haque, A., & Asami, Y. (2014). Optimizing urban land use allocation for planners and real estate developers. Computers, Environment and Urban Systems, 46, 57–69.

    Article  Google Scholar 

  • Hazell, P., & Norton, G. (1986). Mathematical programming for economic analysis in agriculture. London: Macmillan Publishing Company.

    Google Scholar 

  • Heerink, N., Kuiper, M., & van Keulen, H. (2001). Economic policy and sustainable land use. Recent advances in quantitative analysis for developing countries (p. 376). Berlin: Springer.

  • Herrero, M., Fawcett, R. H., & Dent, J. B. (1999). Bio-economic evaluation of dairy farm management scenarios using integrated simulation and multiple-criteria models. Agricultural Systems, 62, 169–188.

    Article  Google Scholar 

  • Herzig, A., Ausseil, A. G. E., & Dymond, J. R. (2013). Spatial optimisation of ecosystem services. In J. R. Dymond (Ed.), Ecosystem services in New Zealand–conditions and trends. Manaaki Whenua Press: Lincoln.

    Google Scholar 

  • Hirshleifer, J., & Riley, J. G. (2002). The analytics of uncertainty and information. Cambridge surveys of economic literature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hildebrandt, P., & Knoke, T. (2009). Optimizing the shares of native tree species in forest plantations with biased financial parameters. Ecological Economics, 68, 2825–2833.

    Article  Google Scholar 

  • Hildebrandt, P., & Knoke, T. (2011). Investment decisions under uncertainty–A methodological review on forest science studies. Forest Policy and Economics, 13, 1–15.

    Article  Google Scholar 

  • Holden, S., Shiferaw, B., & Pender, J. (2004). Non-farm income, household welfare, and sustainable land management in a less-favoured area in the Ethiopian highlands. Food Policy, 29, 369–392.

    Article  Google Scholar 

  • Homans, F. R., & Wilen, J. E. (2005). Markets and rent dissipation in regulated open access fisheries. Journal of Environmental Economics and Management, 49(2), 381–404.

    Article  Google Scholar 

  • Ignizio, J. P. (1976). Goal programming and extensions. Lexington, MA: Heath Lexington Books.

    Google Scholar 

  • Ijiri, Y. (1965). Management goals and accounting for control. Amsterdam: North Holland.

    Google Scholar 

  • Janssen, S., & van Ittersum, M. K. (2007). Assessing farm innovations and responses to policies: A review of bio-economic farm models. Agricultural Systems, 94, 622–636.

    Article  Google Scholar 

  • Kall, P., & Wallace, S. (1994). Stochastic programming. Wiley.

  • Kanellopoulos, A., Reidsma, P., Wolf, J., & van Ittersum, M. K. (2014). Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling. European Journal of Agronomy, 52, 69–80.

    Article  Google Scholar 

  • Keeler, B. L., Gourevitch, J. D., Polasky, S., Isbell, F., Tessum, C. W., Hill, J. D., et al. (2016). The social costs of nitrogen. Science Advances, 2, e1600219.

    Article  Google Scholar 

  • Kennedy, C. M., Hawthorne, P. L., Miteva, D. A., & Baumgarten, L. (2016). Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biological Conservation, 204, 221–230.

    Article  Google Scholar 

  • Knoke, T., & Wurm, J. (2006). Mixed forests and a flexible harvest strategy: A problem for con-ventional risk analysis? European Journal of Forest Research, 125, 303–315.

    Article  Google Scholar 

  • Knoke, T., & Seifert, T. (2008). Integrating selected ecological effects of mixed European beech–Norway spruce stands in bio-economic modelling. Ecological Modelling, 210, 487–498.

    Article  Google Scholar 

  • Knoke, T., Paul, C., Härtl, F., Castro, L. M., Calvas, B., & Hildebrandt, P. (2015). Optimizing agricultural land-use portfolios with scarce data–A non-stochastic model. Ecological Economics, 120, 250–259.

    Article  Google Scholar 

  • Knoke, T., Paul, C., Hildebrandt, P., Calvas, B., Castro, L. M., Härtl, F., Döllerer, M., Hamer, U., Windhorst, D., Wiersma, Y.F., & Fernández, G. F. C. (2016). Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nature Communications, 7, Article number: 11877. https://doi.org/10.1038/ncomms11877.

  • Komarek, A. M., Bell, L. W., Whish, J., Robertson, M. J., & Bellotti, W. (2015). Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China. Agricultural Systems, 133, 63–72.

    Article  Google Scholar 

  • Kragt, M. (2012). Bioeconomic modelling: Integrating economic and environmental systems? In International Environmental Modelling and Software Society. International Congress on Environmental Modelling and Software. Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany.

  • Knowler, D. (2002). A review of selected bioeconomic models with environmental influences in fisheries. Journal of Bioeconomics, 4, 163–181.

    Article  Google Scholar 

  • Lalani, B., Dorward, P., Holloway, G., & Wauters, E. (2016). Smallholder farmers’ motivations for using conservation agriculture and the roles of yield, labour and soil fertility in decision making. Agricultural Systems, 146, 80–90.

    Article  Google Scholar 

  • Lambin, E. F., Rounsevell, M. D. A., & Geist, H. J. (2000). Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems & Environment, 82(1), 321–331.

    Article  Google Scholar 

  • Landa, J. T., & Ghiselin, M. T. (1999). The emerging discipline of bioeconomics: Aims and scope of the Journal of Bioeconomics. Journal of Bioeconomics, 1(5), 5–12. https://doi.org/10.1023/A:1010099821123.

  • Larkin, S., Alvarez, S., Sylvia, G., & Harte, M. (2011). Practical considerations in using bioeconomic modelling for rebuilding fisheries. OECD Food, Agriculture and Fisheries Papers No., 38. https://doi.org/10.1787/5kgk9qclw7mv-en. Accessed October 24, 2016.

  • Levy, H. (2006). Stochastic dominance: Investment decision making under uncertainty (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Liu, X., Lehtonen, K., Purola, T., Pavlova, Y., Rötter, R., & Palosuo, R. (2016). Dynamic economic modelling of crop rotations with farm management practices under future pest pressure. Agricultural Systems, 144, 65–76.

    Article  Google Scholar 

  • Louhichi, K., Flichman, G., & Zekri, S. (1999). A bio-economic model for analyzing the impact of soil and water conservation policies applied to a Tunisian farm. Economie Rurale, 252, 55–64.

    Article  Google Scholar 

  • Macmillan, W. D. (1992). Risk and agricultural land use: A reformulation of the Portfolio-Theoretic Approach to the analysis of a von Thünen Economy. Geographical Analysis, 24, 142–158.

    Article  Google Scholar 

  • Messerer, K., Pretzsch, H., & Knoke, T. (2017). A non-stochastic portfolio model for optimizing the transformation of an even-aged forest stand to continuous cover forestry when information about return fluctuation is incomplete. Annals of Forest Science, 74, 45.

    Article  Google Scholar 

  • Mouysset, L., Doyen, L., Jiguet, F., Allaire, G., & Leger, F. (2011). Bio economic modeling for a sustainable management of biodiversity in agricultural lands. Ecological Economics, 70, 617–626.

    Article  Google Scholar 

  • Pacini, C., Wossink, A., Giesen, G., & Huirne, R. (2004). Evaluation of sustainability, integrated and conventional: A farm and field scale analysis. Agriculture, Ecosystems & Environment, 102, 349–364.

    Article  Google Scholar 

  • Phelps, J., Roman Carrasco, L., Webb, E. L., Koh, L. P., & Pascual, U. (2013). Agricultural intensification escalates future conservation costs. PNAS, 110(19), 7601–7606. https://doi.org/10.1073/pnas.1220070110.

  • Pandey, S., & Hardaker, J. B. (1995). The role of modelling in the quest for sustainable farming systems. Agricultural Systems, 47, 439–450.

    Article  Google Scholar 

  • Paracchini, M. L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., et al. (2015). A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agricultural Systems, 133, 35–53.

    Article  Google Scholar 

  • Pfister, F., Bader, H. P., Scheidegger, R., & Baccini, P. (2005). Dynamic modelling of resource management for farming systems. Agricultural Systems, 86, 1–28.

    Article  Google Scholar 

  • Poppy, G. M., Jepson, P. C., Pickett, J. A., & Birkett, M. A. (2014). Achieving food and environmental security: New approaches to close the gap. Philosophical Transactions of the Royal Society B, 369, 20120272. https://doi.org/10.1098/rstb.2012.0272.

  • Putten, A. B., & van MacMillan, I. C. (2004). Making real options really work. Harvard Bussiness Review, 82, 134–141. PMID: 15605572.

    Google Scholar 

  • Rădulescu, M., Rădulescu, C., & Zbăganu, G. (2014). A portfolio theory approach to crop planning under environmental constraints. Annual of Operational Research, 219, 243–264.

    Article  Google Scholar 

  • Romero, C., Tamiz, M., & Jones, D. F. (1998). Goal programming, compromise programming and reference point method formulations: Linkages and utility interpretations. The Journal of the Operational Research Society, 49, 986–991.

    Article  Google Scholar 

  • Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic programming. The Review of Economics and Statistics, 51, 239–246.

    Article  Google Scholar 

  • Stephens, E., Nicholson, C. F., Brown, D. R., Parsons, D., Barrett, C. B., Lehmann, J., et al. (2012). Modelling the impact of natural resource-based poverty traps on food security in Kenya: The Crops, Livestock and Soils in Smallholder Economic Systems (CLASSES) model. Food Security, 4, 423–439.

    Article  Google Scholar 

  • Schumpeter, J. A. (1954). History of economic analysis. London: Routledge. ISBN 0-415-10888-8.

    Google Scholar 

  • Schönhart, M., Schauppenlehner, T., Kuttner, M., Kirchner, M., & Schmid, E. (2016). Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria. Agricultural Systems, 145, 39–50.

    Article  Google Scholar 

  • Semaan, S., Flichman, G., Scardigno, A., & Steduto, P. (2007). Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach. Agricultural Systems, 94, 357–367.

    Article  Google Scholar 

  • Seppelt, R., Lautenbach, S., & Volk, M. (2013). Identifying trade-offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales. Current Opinion in Environmental Sustainability, 5, 1–6.

    Article  Google Scholar 

  • Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., & Ravindranath, N. H. (2014). Chapter 11—Agriculture, forestry and other land use (AFOLU). In Climate change 2014: Mitigation of climate change. IPCC Working Group III Contribution to AR5. Cambridge: Cambridge University Press.

  • Sirén, A., & Parvinen, K. (2015). A spatial bioeconomic model of the harvest of wild plants and animals. Ecological Economics, 116, 201–210.

    Article  Google Scholar 

  • Tamiz, M., Jones, D., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research, 111, 569–581.

    Article  Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, L. (2011). Global food demand and the sustainable intensification of agriculture. PNAS, 108(50), 20260–20264.

    Article  Google Scholar 

  • Touza, J., Termansen, M., & Perrings, C. (2008). A bioeconomic approach to the Faustmann-Hartman model: Ecological interactions in managed forest. Natural Resource Modelling, 21(4), 551–581.

    Google Scholar 

  • Townsend, T., Ramsden, R. J., & Wilson, P. (2016). Analyzing reduced tillage practices within a bio-economic modelling framework. Agricultural Systems, 146, 91–102.

    Article  Google Scholar 

  • Ten Berge, H. F. M., van Ittersum, M. K., Rossing, W. A. H., van de Ven, G. W. J., & Schans, J. (2000). Farming options for The Netherlands explored by multi-objective modelling. European Journal of Agronomy, 13, 263–277.

    Article  Google Scholar 

  • Uhde, B., Heinrichs, S., Stiehl, C. R., Ammer, C., Müller-Using, B., & Knoke, T. (2017). Bringing ecosystem services into forest planning–Can we optimize the composition of Chilean forests based on expert knowledge? Forest Ecology and Management, 404, 126–140.

    Article  Google Scholar 

  • Vanclay, J. K. (1994). Modelling forest growth and yield. Applications to mixed tropical forests. Wallingford: CAB International.

    Google Scholar 

  • Van den Belt, M. (2004). Mediated modelling: A system dynamics approach to environmental consensus building. Washington, DC: Island Press.

    Google Scholar 

  • Yemshanov, D., McCarney, G. D., Hauer, G., Luckert, M., Unterschultz, J., & McKenney, D. W. (2015). A real options-net present value approach to assessing land use change: A case study of afforestation in Canada. Forest Policy and Economics, 50, 327–336.

    Article  Google Scholar 

  • Yu, H. X., & Jin, Li. (2012). A brief introduction to robust optimization approach. International Journal of Pure and Applied Mathematics, 74, 121–124.

    Google Scholar 

Download references

Acknowledgements

We want to express our gratitude to the Deutsche Forschungsgemeinschaft (DFG) for their financial support (KN 586/5-2, KN 586/9-1) and to the members of the research group FOR 816. The authors also wish to thank Mr. Dave Parsons and Michael Du for language editing and Dr. Patrick Hildebrandt for valuable comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Maria Castro.

Appendix

Appendix

See Table 2.

Table 2 List of recent studies applying bio-economic modelling to land-use problems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L.M., Härtl, F., Ochoa, S. et al. Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations. J Bioecon 20, 183–211 (2018). https://doi.org/10.1007/s10818-018-9270-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-018-9270-6

Keywords

Mathematics Subject Classification

Navigation