Skip to main content

Advertisement

Log in

How Integrated Ecological-Economic Modelling Can Inform Landscape Pattern in Forest Agroecosystems

  • Interface of Landscape Ecology and Natural Resource Management (Y. Wiersma and N. Koper, Section Editors)
  • Published:
Current Landscape Ecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to analyse recent advances in ecological-economic modelling designed to inform desirable landscape composition and configuration. We explore how models capture the economic and ecological consequences of landscape pattern, and potential feedbacks to the responses by policy or landholders.

Recent Findings

Modelling approaches are becoming increasingly interlinked, coupling components of empirical-statistical modelling, spatial and bioeconomic simulation, land-use optimization and agent-based models. We analyse recent methodological advances and find that only few examples capture feedbacks between landscape pattern and decision-making.

Summary

We outline how future hybrid models could build on these recent advances by inter alia an improved representation of landscape patterns, refining the theory behind decision-making, incorporating uncertainty and reducing model complexity. We conclude that coupling recent developments in land-use optimization and agent-based models may help bridge gaps between modelling philosophies as well as parsimony vs. complexity. This fruitful field of research could help to improve understanding on the role of landscape pattern in social-ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Defries R, Nagendra H. Ecosystem management as a wicked problem. Science. 2017;356:265–70. https://doi.org/10.1126/science.aal1950 .

    Article  CAS  PubMed  Google Scholar 

  2. Sayer J, Sunderland T, Ghazoul J, Pfund J-L, Sheil D, Meijaard E, et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci U.S.A. 2013;110:8349–8356. doi:https://doi.org/10.1073/pnas.1210595110 .

  3. • Chopin P, Bergkvist G, Hossard L. Modelling biodiversity change in agricultural landscape scenarios—a review and prospects for future research. Biol Conserv. 2019;235:1–17. doi:https://doi.org/10.1016/j.biocon.2019.03.046 . Review article summarizing current models predicting biodiversity change. The authors suggest to more intensively incorporate such models in ecological-economic models.

  4. Fahrig L. Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst. 2017;48:1–23. doi:https://doi.org/10.1146/annurev-ecolsys-110316-022612 .

  5. Landis DA. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl Ecol. 2017;18:1–12. https://doi.org/10.1016/j.baae.2016.07.005 .

    Article  Google Scholar 

  6. Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landscape Ecol. 2018;33:1247–57. https://doi.org/10.1007/s10980-018-0673-5 .

    Article  Google Scholar 

  7. Verhagen W, AJA VT, Baggio Compagnucci A, Poggio L, Gimona A, Verburg PH. Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landscape Ecol. 2016;31:1457–79. https://doi.org/10.1007/s10980-016-0345-2 .

    Article  Google Scholar 

  8. Koh LP, Levang P, Ghazoul J. Designer landscapes for sustainable biofuels. Trend Ecol Evol. 2009;24:431–8. https://doi.org/10.1016/j.tree.2009.03.012 .

    Article  Google Scholar 

  9. Georgescu-Roegen N. Inequality, limits and growth from a bioeconomic viewpoint. Rev Soc Econ. 1977;35:361–75. https://doi.org/10.1080/00346767700000041 .

    Article  Google Scholar 

  10. Castro LM, Härtl F, Ochoa S, Calvas B, Izquierdo L, Knoke T. Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations. J Bioecon. 2018;94:405. doi:https://doi.org/10.1007/s10818-018-9270-6 .

  11. Schlüter M, Müller B, Frank K. The potential of models and modeling for social-ecological systems research: the reference frame ModSES. E&S 2019. doi:https://doi.org/10.5751/ES-10716-240131 .

  12. Verburg PH, Dearing JA, Dyke JG, van der Leeuw S, Seitzinger S, Steffen W, et al. Methods and approaches to modelling the Anthropocene. Global Environ Change. 2016;39:328–40. https://doi.org/10.1016/j.gloenvcha.2015.08.007 .

    Article  Google Scholar 

  13. • O’Sullivan D, Evans T, Manson S, Metcalf S, Ligmann-Zielinska A, Bone C. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome. J Land Use Sc. 2016;11:177–87. doi:https://doi.org/10.1080/1747423X.2015.1030463 . This article summarizes important steps for future ABM models.

  14. Von Thünen, JH. Der isolirte Staat in Beziehung auf Landwirthschaft und Nationalökonomie: Die naturgemässe Arbeitslose und dessen Verhältniss zum Zinsfuss und zur Landwirte. II. Theil, I. Abtheilung. Rostock, Germany: Leopold; 1845.

  15. Frazier AE, Kedron P. Landscape metrics: past progress and future directions. Curr Landscape Ecol Rep. 2017;2:63–72. https://doi.org/10.1007/s40823-017-0026-0 .

    Article  Google Scholar 

  16. Wu Q, Guo F, Li H, Kang J. Measuring landscape pattern in three dimensional space. Landsc Urb Plann. 2017;167:49–59. https://doi.org/10.1016/j.landurbplan.2017.05.022 .

    Article  Google Scholar 

  17. Santana J, Reino L, Stoate C, Moreira F, Ribeiro PF, Santos JL, et al. Combined effects of landscape composition and heterogeneity on farmland avian diversity. Ecol Evol. 2017;7:1212–1223. doi:https://doi.org/10.1002/ece3.2693 .

    Article  Google Scholar 

  18. Westphal C, Vidal S, Horgan FG, Gurr GM, Escalada M, van Chien H, et al. Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl Ecol. 2015;16:681–689. doi:https://doi.org/10.1016/j.baae.2015.10.004 .

  19. Schulte LA, Niemi J, Helmers MJ, Liebman M, Arbuckle JG, James DE, et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc Natl Acad Sci U.S.A. 2017;114:11247–52. doi:https://doi.org/10.1073/pnas.1620229114 .

  20. Minang PA, Noordwijk M Van, Freeman OE, Mbow C, de Leeuw J, Catacutan D, editors. Climate-smart landscapes: Multifunctionality in practice. Nairobi: World Agrofrestry Centre; 2015.

  21. Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric Syst 2016. doi:https://doi.org/10.1016/j.agsy.2016.09.021 .

  22. Paul C, Weber M, Knoke T. Agroforestry versus farm mosaic systems—comparing land-use efficiency, economic returns and risks under climate change effects. Sci Total Environ. 2017. https://doi.org/10.1016/j.scitotenv.2017.02.037 .

    Article  CAS  Google Scholar 

  23. Paul C, Knoke T. Between land sharing and land sparing—what role remains for forest management and conservation? Int Forest Rev. 2015;17:210–30. https://doi.org/10.1505/146554815815500624 .

    Article  Google Scholar 

  24. TEEB. The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusion and recommendations of TEEB. 2010.

  25. Wunder S, Brouwer R, Engel S, Ezzine-de-Blas D, Muradian R, Pascual U, et al. From principles to practice in paying for nature’s services. Nat Sustain. 2018;1:145–50. https://doi.org/10.1038/s41893-018-0036-x .

    Article  Google Scholar 

  26. Vallet A, Locatelli B, Levrel H, Wunder S, Seppelt R, Scholes RJ, et al. Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies. Ecol Econ. 2018;150:96–106. https://doi.org/10.1016/j.ecolecon.2018.04.002 .

    Article  Google Scholar 

  27. Herrero-Jáuregui C, Arnaiz-Schmitz C, Herrera L, Smart SM, Montes C, Pineda FD, et al. Aligning landscape structure with ecosystem services along an urban–rural gradient. Trade-offs and transitions towards cultural services. Landscape Ecol. 2018;12:8. https://doi.org/10.1007/s10980-018-0756-3 .

    Article  Google Scholar 

  28. Zhang Z, Gao J. Linking landscape structures and ecosystem service value using multivariate regression analysis: a case study of the Chaohu Lake Basin, China. Environ Earth Sci. 2016;75:5. https://doi.org/10.1007/s12665-015-4862-0 .

    Article  CAS  Google Scholar 

  29. Ochoa WS, Härtl F, Paul C, Knoke T. Cropping systems are homogenized by off-farm income—empirical evidence from small-scale farming systems in dry forests of southern Ecuador. Land Use Pol. 2019;82:204–19. https://doi.org/10.1016/j.landusepol.2018.11.025 .

    Article  Google Scholar 

  30. Weigel R, Koellner T, Poppenborg P, Bogner C. Crop diversity and stability of revenue on farms in Central Europe: an analysis of big data from a comprehensive agricultural census in Bavaria. PLoS ONE. 2018;13:e0207454. https://doi.org/10.1371/journal.pone.0207454 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthies BD, Jacobsen JB, Knoke T, Paul C, Valsta L. Utilising portfolio theory in environmental research—new perspectives and considerations. J Environ Manage. 2019;231:926–39. https://doi.org/10.1016/j.jenvman.2018.10.049 .

    Article  PubMed  Google Scholar 

  32. Lausch A, Blaschke T, Haase D, Herzog F, Syrbe R-U, Tischendorf L, et al. Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecological Modelling. 2015;295:31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018 .

    Article  Google Scholar 

  33. Elsawah S, Pierce SA, Hamilton SH, van Delden H, Haase D, Elmahdi A, et al. An overview of the system dynamics process for integrated modelling of socio-ecological systems: lessons on good modelling practice from five case studies. Env Mod Softw. 2017;93:127–45. https://doi.org/10.1016/j.envsoft.2017.03.001 .

    Article  Google Scholar 

  34. Mas J-F, Kolb M, Paegelow M, Camacho Olmedo MT, Houet T. Inductive pattern-based land use/cover change models: a comparison of four software packages. Env Mod Softw. 2014;51:94–111. https://doi.org/10.1016/j.envsoft.2013.09.010 .

    Article  Google Scholar 

  35. • Daniel CJ, Frid L, Sleeter BM, Fortin M-J, Kriticos D. State-and-transition simulation models: a framework for forecasting landscape change. Methods Ecol Evol. 2016;7:1413–23. doi:https://doi.org/10.1111/2041-210X.12597 . The article presents important innovations towards improving spatial and time dynamics of STM Models.

  36. Costanza JK, Abt RC, AJ MK, Collazo JA. Bioenergy production and forest landscape change in the southeastern United States. GCB Bioenergy. 2017;9:924–39. https://doi.org/10.1111/gcbb.12386 .

    Article  Google Scholar 

  37. Costanza JK, Terando AJ, AJ MK, Collazo JA. Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern U.S. J Environ Manage. 2015;151:186–99. https://doi.org/10.1016/j.jenvman.2014.12.032 .

    Article  PubMed  Google Scholar 

  38. Grashof-Bokdam CJ, Cormont A, NBP P, EJGM W, JGJ F, PFM O. Modelling shifts between mono- and multifunctional farming systems: the importance of social and economic drivers. Landscape Ecol. 2017;32:595–607. https://doi.org/10.1007/s10980-016-0458-7 .

    Article  Google Scholar 

  39. Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, SSA M. Modeling the spatial dynamics of regional land use: the CLUE-S model. Env Manag. 2002;30:391–405. https://doi.org/10.1007/s00267-002-2630-x .

    Article  Google Scholar 

  40. Zhao M, He Z. Evaluation of the effects of land cover change on ecosystem service values in the upper reaches of the Heihe River Basin, Northwestern China. Sustainability. 2018;10:4700. https://doi.org/10.3390/su10124700 .

    Article  Google Scholar 

  41. Ferreira BM, Soares-Filho BS, FMQ P. The Dinamica EGO virtual machine. Sc Comp Programm. 2019;173:3–20. https://doi.org/10.1016/j.scico.2018.02.002 .

    Article  Google Scholar 

  42. Stan K, Sanchez-Azofeifa A, Espírito-Santo M, Portillo-Quintero C. Simulating deforestation in Minas Gerais, Brazil, under changing government policies and socioeconomic conditions. PLoS ONE. 2015;10:–e0137911. https://doi.org/10.1371/journal.pone.0137911 .

    Article  Google Scholar 

  43. Djanibekov U, Khamzina A. Stochastic economic assessment of afforestation on marginal land in irrigated farming system. Environ Resource Econ. 2016;63:95–117. https://doi.org/10.1007/s10640-014-9843-3 .

    Article  Google Scholar 

  44. Rosa F, Taverna M, Nassivera F, Iseppi L. Farm/crop portfolio simulations under variable risk: a case study from Italy. Agric Econ. 2019;7:171. https://doi.org/10.1186/s40100-019-0127-7 .

    Article  Google Scholar 

  45. Knoke T, Messerer K, Paul C. The role of economic diversification in forest ecosystem management. Curr Forestry Rep. 2017;3:93–106. https://doi.org/10.1007/s40725-017-0054-3 .

    Article  Google Scholar 

  46. Castro LM, Calvas B, Knoke T. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios. PLoS ONE. 2015;10:e0120384. https://doi.org/10.1371/journal.pone.0120384 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hauk S, Gandorfer M, Wittkopf S, Müller UK, Knoke T. Ecological diversification is risk reducing and economically profitable—the case of biomass production with short rotation woody crops in south German land-use portfolios. Biomass and Bioenergy. 2017;98:142–52. https://doi.org/10.1016/j.biombioe.2017.01.018 .

    Article  Google Scholar 

  48. Mahabadi SA, ARM B, Bgheri A. Improving adaptive capacity of social-ecological system of Tashk-Bakhtegan Lake basin to climate change effects—a methodology based on Post-Modern Portfolio Theory. Ecohydrology & Hydrobiology. 2018;18:365–78. https://doi.org/10.1016/j.ecohyd.2018.11.002 .

    Article  Google Scholar 

  49. Knoke T, Paul C, Härtl F, Castro LM, Calvas B, Hildebrandt P. Optimizing agricultural land-use portfolios with scarce data—a non-stochastic model. Ecological Economics. 2015;120:250–9. https://doi.org/10.1016/j.ecolecon.2015.10.021 .

    Article  Google Scholar 

  50. Ochoa M, Santiago W, Paul C, Maria Castro L, Valle L, Knoke T. Banning goats could exacerbate deforestation of the Ecuadorian dry forest—how the effectiveness of conservation payment is influenced by productive use options. Erdkunde. 2016;70:49–67.

    Article  Google Scholar 

  51. •• Chopin P, Blazy J-M, Guindé L, Wery J, Doré T. A framework for designing multi-functional agricultural landscapes: application to Guadeloupe Island. Agric Syst. 2017;157:316–29. doi:https://doi.org/10.1016/j.agsy.2016.10.003 . A study combining optimization and simulation approaches in an ecological-economic land-use allocation model.

  52. • Kaim A, Cord AF, Volk M. A review of multi-criteria optimization techniques for agricultural land use allocation. Env Mod Softw. 2018;105:79–93. doi:https://doi.org/10.1016/j.envsoft.2018.03.031 . Recent review summarizing up-to-date optimization algorithms used in multicriteria optimization of land-use allocation.

  53. Uhde B, Andreas Hahn W, Griess VC, Knoke T. Hybrid MCDA methods to integrate multiple ecosystem services in forest management planning: a critical review. Env Manag. 2015;56:373–88. https://doi.org/10.1007/s00267-015-0503-3 .

    Article  Google Scholar 

  54. Kennedy CM, Miteva DA, Baumgarten L, Hawthorne PL, Sochi K, Polasky S, et al. Bigger is better: improved nature conservation and economic returns from landscape-level mitigation. Sci Adv. 2016;2:e1501021. https://doi.org/10.1126/sciadv.1501021 .

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li X, Ma X. An improved simulated annealing algorithm for interactive multi-objective land resource spatial allocation. Ecol Complex. 2018;36:184–95. https://doi.org/10.1016/j.ecocom.2018.08.008 .

    Article  CAS  Google Scholar 

  56. •• Knoke T, Paul C, Hildebrandt P, Calvas B, Castro LM, Hartl F, et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat Commun. 2016;7:11877. doi:https://doi.org/10.1038/ncomms11877 . A new methodological approach to solve complex problems of land-use allocation using a parsimonious multi-objective optimization approach.

  57. Soltani A, Sankhayan PL, Hofstad O. Playing forest governance games: state-village conflict in Iran. For Pol Econ. 2016;73:251–61. https://doi.org/10.1016/j.forpol.2016.09.021 .

    Article  Google Scholar 

  58. Bateman IJ, Harwood AR, Mace GM, Watson RT, ABSON DJ, Andrews B, et al. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science. 2013;341:45–50. doi:https://doi.org/10.1126/science.1234379 .

  59. Yoshimoto A, Asante P, Konoshima M, Surovy P. Integer programming approach to control invasive species spread based on cellular automaton model. Nat Resour Model. 2017. https://doi.org/10.1111/nrm.12101 .

  60. Cavender-Bares J, Polasky S, King E, Balvanera P. A sustainability framework for assessing trade-offs in ecosystem services. E&S 2015. doi:https://doi.org/10.5751/ES-06917-200117 .

  61. Dunnett A, Shirsath PB, Aggarwal PK, Thornton P, Joshi PK, Pal BD, et al. Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions. Ecol Modell. 2018;381:23–35. doi:https://doi.org/10.1016/j.ecolmodel.2018.04.008 .

  62. Kennedy CM, Hawthorne PL, Miteva DA, Baumgarten L, Sochi K, Matsumoto M, et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol Conserv. 2016;204:221–230. doi:https://doi.org/10.1016/j.biocon.2016.10.039 .

  63. Verhagen W, van der Zanden EH, Strauch M, van AJA T, Verburg PH. Optimizing the allocation of agri-environment measures to navigate the trade-offs between ecosystem services, biodiversity and agricultural production. Env Sc. Pol. 2018;84:186–96. https://doi.org/10.1016/j.envsci.2018.03.013 .

    Article  Google Scholar 

  64. • Schulze J, Müller B, Groeneveld J, Grimm V. Agent-based modelling of social-ecological systems: achievements, challenges, and a way forward. JASSS 2017. doi:https://doi.org/10.18564/jasss.3423 . Recent review summarizing methods and research topics of economic-ecological ABM models.

  65. Filatova T, Verburg PH, Parker DC, Stannard CA. Spatial agent-based models for socio-ecological systems: challenges and prospects. Env Mod Softw. 2013;45:1–7. https://doi.org/10.1016/j.envsoft.2013.03.017 .

    Article  Google Scholar 

  66. Berger T, Troost C. Agent-based modelling of climate adaptation and mitigation options in agriculture. J Agric Econ. 2014;65:323–48. https://doi.org/10.1111/1477-9552.12045 .

    Article  Google Scholar 

  67. Gonzalez-Redin J, Gordon IJ, Hill R, Polhill JG, Dawson TP. Exploring sustainable land use in forested tropical social-ecological systems: a case-study in the wet tropics. J Environ Manage. 2019;231:940–52. https://doi.org/10.1016/j.jenvman.2018.10.079 .

    Article  PubMed  Google Scholar 

  68. Brown C, Alexander P, Holzhauer S, MDA R. Behavioral models of climate change adaptation and mitigation in land-based sectors. WIREs Clim Change. 2017;8:e448. https://doi.org/10.1002/wcc.448 .

    Article  Google Scholar 

  69. Villamor GB, Le QB DU, van Noordwijk M, PLG V. Biodiversity in rubber agroforests, carbon emissions, and rural livelihoods: an agent-based model of land-use dynamics in lowland Sumatra. Env Modell Softw. 2014;61:151–65. https://doi.org/10.1016/j.envsoft.2014.07.013 .

    Article  Google Scholar 

  70. Amadou ML, Villamor GB, Kyei-Baffour N. Simulating agricultural land-use adaptation decisions to climate change: an empirical agent-based modelling in northern Ghana. Agric Syst. 2018;166:196–209. https://doi.org/10.1016/j.agsy.2017.10.015 .

    Article  Google Scholar 

  71. •• Dislich C, Hettig E, Salecker J, Heinonen J, Lay J, Meyer KM, et al. Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs. PLoS ONE. 2018;13:e0190506. doi:https://doi.org/10.1371/journal.pone.0190506 . This study integrates ABM with a landscape generator, farmer heterogeneity and aspects of learning and farmer interactions on land-use allocation.

  72. Carauta M, Latynskiy E, Mössinger J, Gil J, Libera A, Hampf A, et al. Can preferential credit programs speed up the adoption of low-carbon agricultural systems in Mato Grosso, Brazil?: Results from bioeconomic microsimulation. Reg Environ Change. 2018;18:117–128. doi:https://doi.org/10.1007/s10113-017-1104-x .

  73. Kerebel A, Gélinas N, Déry S, Voigt B, Munson A. Landscape aesthetic modelling using Bayesian networks: Conceptual framework and participatory indicator weighting. Landsc Urb Plann. 2019;185:258–71. https://doi.org/10.1016/j.landurbplan.2019.02.001 .

    Article  Google Scholar 

  74. Kremmydas D, Athanasiadis IN, Rozakis S. A review of agent based modeling for agricultural policy evaluation. Agric Syst. 2018;164:95–106. https://doi.org/10.1016/j.agsy.2018.03.010 .

    Article  Google Scholar 

  75. Kelley H, Evans T. The relative influences of land-owner and landscape heterogeneity in an agent-based model of land-use. Ecol Econ. 2011;70:1075–87. https://doi.org/10.1016/j.ecolecon.2010.12.009 .

    Article  Google Scholar 

  76. •• Langhammer M, Thober J, Lange M, Frank K, Grimm V. Agricultural landscape generators for simulation models: a review of existing solutions and an outline of future directions. Ecol Modell. 2019;393:135–51. doi:https://doi.org/10.1016/j.ecolmodel.2018.12.010 . Review article presenting important advances in landscape generators which could become an important backbone for future ecological-economic modelling.

  77. Salecker J, Dislich C, Kerstin Wiegand K, Meyer KM, Pe’er G. EFForTS-LGraf: a landscape generator for creating smallholder-driven land-use mosaics. Göttingen: EFForTS discussion paper series, University of Goettingen: 29; 2019.

  78. Pe’er G, Zurita GA, Schober L, Bellocq MI, Strer M, Müller M, et al. Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model. PLoS ONE. 2013;8:e64968. https://doi.org/10.1371/journal.pone.0064968 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schreinemachers P, Berger T. Land use decisions in developing countries and their representation in multi-agent systems. J Land Use Sc. 2006;1:29–44. https://doi.org/10.1080/17474230600605202 .

    Article  Google Scholar 

  80. Seppelt R, Lautenbach S, Volk M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr Opin Env Sustain. 2013;5:458–63. https://doi.org/10.1016/j.cosust.2013.05.002 .

    Article  Google Scholar 

  81. Oremland M, Laubenbacher R. Optimization of agent-based models: scaling methods and heuristic algorithms. JASSS. 2014. https://doi.org/10.18564/jasss.2472 .

  82. Estrella R, Cattrysse D, van Orshoven J. Comparison of three ideal point-based multi-criteria decision methods for afforestation planning. Forests. 2014;5:3222–40.

    Article  Google Scholar 

  83. Dragicevic A, Boulanger V, Bruciamacchie M, Chauchard S, Dupouey J-L, Stenger A. Network connectivity value. J Theor Biol. 2017;419:310–22. https://doi.org/10.1016/j.jtbi.2017.02.026 .

    Article  PubMed  Google Scholar 

  84. Drechsler M, Surun C. Land-use and species tipping points in a coupled ecological-economic model. Ecol Complex. 2018;36:86–91. https://doi.org/10.1016/j.ecocom.2018.06.004 .

    Article  Google Scholar 

  85. Gimona A, Polhill JG. Exploring robustness of biodiversity policy with a coupled metacommunity and agent-based model. J Land Use Sc. 2011;6:175–93. https://doi.org/10.1080/1747423X.2011.558601 .

    Article  Google Scholar 

  86. Epanchin-Niell RS, Wilen JE. Individual and cooperative management of invasive species in human-mediated landscapes. Am J Agric Econ. 2014;97:180–98. https://doi.org/10.1093/ajae/aau058 .

    Article  Google Scholar 

  87. Harasimowicz S, Janus J, Bacior S, Gniadek J. Shape and size of parcels and transport costs as a mixed integer programming problem in optimization of land consolidation. Comp Elec Agr. 2017;140:113–22. https://doi.org/10.1016/j.compag.2017.05.035 .

    Article  Google Scholar 

  88. • Groeneveld J, Müller B, Buchmann CM, Dressler G, Guo C, Hase N, et al. Theoretical foundations of human decision-making in agent-based land use models—a review. Env Mod Softw. 2017;87:39–48. doi:https://doi.org/10.1016/j.envsoft.2016.10.008 . Comprehensive review analysing how economic and behavioural theories have been implemented in to agent-based models.

  89. Simon HA. Rational choice and the structure of the environment. Psych Rev. 1956;63:129–38. https://doi.org/10.1037/h0042769 .

    Article  CAS  Google Scholar 

  90. Salvini G, Ligtenberg A, van Paassen A, Bregt AK, Avitabile V, Herold M. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. J Environ Manage. 2016;172:58–70. https://doi.org/10.1016/j.jenvman.2015.11.060 .

    Article  CAS  PubMed  Google Scholar 

  91. Zagaria C, CJE S, Kizos T, Gounaridis D, Verburg PH. Cultural landscapes and behavioral transformations: an agent-based model for the simulation and discussion of alternative landscape futures in East Lesvos, Greece. Land Use Policy. 2017;65:26–44. https://doi.org/10.1016/j.landusepol.2017.03.022 .

    Article  Google Scholar 

  92. Ou G, Tan S, Zhou M, Lu S, Tao Y, Zhang Z, et al. An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level. J Environ Manage. 2017;204:651–666. doi:https://doi.org/10.1016/j.jenvman.2017.09.021 .

  93. Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization: Princeton University Press; 2009.

  94. Cai Y. Computational methods in environmental and resource economics. Annu Rev Resour Econ. 2019. https://doi.org/10.1146/annurev-resource-100518-093841 .

    Article  Google Scholar 

  95. Sun Z, Lorscheid I, Millington JD, Lauf S, Magliocca NR, Groeneveld J, et al. Simple or complicated agent-based models?: A complicated issue. Env Modell Softw. 2016;86:56–67. doi:https://doi.org/10.1016/j.envsoft.2016.09.006 .

  96. Murray-Rust D, Robinson DT, Guillem E, Karali E, Rounsevell M. An open framework for agent based modelling of agricultural land use change. Env Mod Softw. 2014;61:19–38. https://doi.org/10.1016/j.envsoft.2014.06.027 .

    Article  Google Scholar 

  97. Reidsma P, Jeuffroy M-H. Farming systems analysis and design for sustainable intensification: new methods and assessments. Eur J Agron. 2017;82:203–5. https://doi.org/10.1016/j.eja.2016.11.007 .

    Article  Google Scholar 

  98. Hettig E, Lay J, Sipangule K. Drivers of households’ land-use decisions: a critical review of micro-level studies in tropical regions. Land. 2016;5:32. https://doi.org/10.3390/land5040032 .

    Article  Google Scholar 

  99. Shah P, Mallory ML, Ando AW, Guntenspergen GR. Fine-resolution conservation planning with limited climate-change information. Conserv Biol. 2017;31:278–89. https://doi.org/10.1111/cobi.12793 .

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has benefitted from research funded by the Deutsche Forschungsgemeinschaft (PA 3162-1, KN586/9-1) and research in the framework of the collaborative German-Indonesian research project EFForTS (CRC 990, project number 19262686).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Paul.

Ethics declarations

Conflict of Interest

Carola Paul, Esther Reith, Jan Salecker and Thomas Knoke declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Interface of Landscape Ecology and Natural Resource Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, C., Reith, E., Salecker, J. et al. How Integrated Ecological-Economic Modelling Can Inform Landscape Pattern in Forest Agroecosystems. Curr Landscape Ecol Rep 4, 125–138 (2019). https://doi.org/10.1007/s40823-019-00046-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40823-019-00046-4

Keywords

Navigation