Skip to main content
Log in

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks with Applications to Probability Theory

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Aharoni et al. (J Combinat Theory, Ser B 101:1–17, 2010) proved the max-flow min-cut theorem for countable networks, namely that in every countable network with finite edge capacities, there exists a flow and a cut such that the flow saturates all outgoing edges of the cut and is zero on all incoming edges. In this paper, we formalize their proof in Isabelle/HOL and thereby identify and fix several problems with their proof. We also provide a simpler proof for networks where the total outgoing capacity of all vertices other than the source and the sink is finite. This proof is based on the max-flow min-cut theorem for finite networks. As a use case, we formalize a characterization theorem for relation lifting on discrete probability distributions and two of its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The record package achieves extensibility with structural subtyping by internally generalizing \(\alpha \ \textsf {graph}\) to \((\alpha , \beta )\ \textsf {graph-scheme}\), where \(\beta \) is the extension slot for further fields. For example, \(\beta \) is instantiated with the singleton type \(\textsf {unit}\) for \(\textsf {graph}\). All operations on \(\textsf {graph}\) are actually defined on \(\textsf {graph-scheme}\) so that they also work for all record extensions. We omit this technicality from the presentation.

  2. Sack and Zhang set \(e_{i,j} = \infty \) if \(x_i \mathrel {R} y_j\), but the max-flow min-cut theorem handles only finite edge capacities. Their argument works unchanged for any value greater than 1, such as our choice of 2.

  3. Sack and Zhang’s proof is formalized in the theory Rel_PMF_Characterisation in the accompanying AFP entry [25] version for Isabelle2016-1. The modified proof can be found in the theory Rel_PMF_Characterisation_MFMC in the version for Isabelle2021-1 of the same AFP entry.

References

  1. Aharoni, R.: Menger’s theorem for graphs containing no infinite paths. Eur. J. Comb. 4, 201–204 (1983). https://doi.org/10.1016/S0195-6698(83)80012-2

  2. Aharoni, R., Berger, E.: Menger’s theorem for infinite graphs. Invent. Math. 176(1), 1–62 (2009). https://doi.org/10.1007/s00222-008-0157-3

  3. Aharoni, R., Berger, E., Georgakopoulos, A., Perlstein, A., Sprüssel, P.: The max-flow min-cut theorem for countable networks. J. Combinat. Theory, Ser. B 101, 1–17 (2010). https://doi.org/10.1016/j.jctb.2010.08.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci. Comput. Program. 74, 568–589 (2009). https://doi.org/10.1016/j.scico.2007.09.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000). https://doi.org/10.1006/jcss.1999.1683

    Article  MathSciNet  MATH  Google Scholar 

  6. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M., Damiani F. (Eds.) TYPES 2003, LNCS, vol. 3085, pp. 34–50. Springer (2004). doi: https://doi.org/10.1007/978-3-540-24849-13

  7. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52, 123–153 (2014). https://doi.org/10.1007/s10817-013-9284-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Ballarin, C.: Exploring the structure of an algebra text with locales. J. Autom. Reason. 64, 1093–1121 (2020). https://doi.org/10.1007/s10817-019-09537-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Barthe, G., Espitau, T., Hsu, J., Sato, T., Strub, P.Y.: *-liftings for differential privacy. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl A. (Eds.) ICALP 2017, LIPIcs, vol. 80, pp. 102:1–102:12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017). doi: https://doi.org/10.4230/LIPIcs.ICALP.2017.102

  10. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal Certification of Code-based Cryptographic Proofs. In: POPL 2009, pp. 90–101. ACM (2009). https://doi.org/10.1145/1480881.1480894

  11. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular (co)datatypes for Isabelle/HOL. In: ITP 2014, LNCS, vol. 8558, pp. 93–110. Springer (2014). doi: https://doi.org/10.1007/978-3-319-08970-67

  12. Bourbaki, N.: Sur le théorème de Zorn. Arch. Math. 2(6), 434–437 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, Y.: Semantics of Probabilistic Processes. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-45198-4

    Book  MATH  Google Scholar 

  14. Desharnais, J.: Labelled Markov Processes. Ph.D. Thesis, McGill University (1999)

  15. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972). https://doi.org/10.1145/321694.321699

    Article  MATH  Google Scholar 

  16. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956). https://doi.org/10.4153/CJM-1956-045-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system types. In: Urban, C., Zhang X. (Eds.) ITP 2015, LNCS, vol. 9236, pp. 203–220. Springer (2015). doi: https://doi.org/10.1007/978-3-319-22102-113

  18. Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in Isabelle/HOL. In: CPP 2013, LNCS, vol. 8307, pp. 131–146. Springer (2013). doi: https://doi.org/10.1007/978-3-319-03545-19

  19. Immler, F.: Generic construction of probability spaces for paths of stochastic processes in Isabelle/HOL. Master’s thesis, Fakultät für Informatik, Technische Universität München (2012)

  20. Kellerer, H.G.: Funktionen auf Produkträumen mit vorgegebenen Marginal-Funktionen. Math. Ann. 144, 323–344 (1961). https://doi.org/10.1007/BF01470505

    Article  MathSciNet  MATH  Google Scholar 

  21. Kunčar, O., Popescu, A.: From types to sets by local type definition in higher-order logic. J. Autom. Reason. 62, 237–260 (2019). https://doi.org/10.1007/s10817-018-9464-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Lammich, P., Sefidgar, S.R.: Formalizing the Edmonds-Karp algorithm. In: J.C. Blanchette, S. Merz (eds.) ITP 2016, LNCS, vol. 9807, pp. 219–234. Springer (2016). doi: https://doi.org/10.1007/978-3-319-43144-414

  23. Lammich, P., Sefidgar, S.R.: Formalizing network flow algorithms: a refinement approach in Isabelle/HOL. J. Autom. Reason. 62, 261–280 (2019). https://doi.org/10.1007/s10817-017-9442-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, G.: Correctnesss of Ford-Fulkerson’s maximum flow algorithm. Formal. Math. 13(2), 305–314 (2005). https://fm.mizar.org/2005-13/pdf13-2/glib_005.pdf

  25. Lochbihler, A.: A formal proof of the max-flow min-cut theorem for countable networks. Archive of Formal Proofs (2016). http://www.isa-afp.org/entries/MFMC_Countable.shtml, Formal proof development

  26. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher-order logic. In: P. Thiemann (ed.) ESOP 2016, LNCS, vol. 9632, pp. 503–531. Springer (2016). doi: https://doi.org/10.1007/978-3-662-49498-120

  27. Lochbihler, A.: Probabilistic while loop. Archive of Formal Proofs (2017). https://isa-afp.org/entries/Probabilistic_While.html, Formal proof development

  28. Lochbihler, A.: A mechanized proof of the max-flow min-cut theorem for countable networks. In: Cohen, L., Kaliszyk C. (Eds.) ITP 2021, LIPIcs, vol. 193, pp. 25:1–25:18 (2021). doi: https://doi.org/10.4230/LIPIcs.ITP.2021.25

  29. Lochbihler, A.: A mechanized proof of the max-flow min-cut theorem for countable networks with applications to probability theory. http://www.andreas-lochbihler.de/pub/lochbihler-mfmc.pdf (2021)

  30. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, New York (2017). https://doi.org/10.1017/9781316672815

    Book  MATH  Google Scholar 

  31. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record subtyping in higher-order logic. In: Grundy, J., Newey M. (Eds.) TPHOLs 1998, LNCS, vol. 1479, pp. 349–366. Springer (1998). doi: https://doi.org/10.1007/BFb0055146

  32. Sabot, C., Tournier, L.: Random walks in Dirichlet environment: an overview. Annales de la Faculté des sciences de Toulouse: Mathématiques Ser. 6, 26(2), 463–509 (2017). doi: https://doi.org/10.5802/afst.1542

  33. Sack, J., Zhang, L.: A general framework for probabilistic characterizing formulae. In: Kuncak, V., Rybalchenko, A. (Eds.) VMCAI 2012, LNCS, vol. 7148, pp. 396–411. Springer (2012). doi: https://doi.org/10.1007/978-3-642-27940-926

  34. Smolka, G., Schäfer, S., Doczkal, C.: Transfinite constructions in classical type theory. In: Urban, C., Zhang, X., (Eds.) ITP 2015, LNCS, vol. 9236, pp. 391–404. Springer (2015). doi: https://doi.org/10.1007/978-3-319-22102-126

  35. Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36(2), 423–439 (1965). https://doi.org/10.1214/aoms/1177700153

    Article  MathSciNet  MATH  Google Scholar 

  36. Wiedijk, F.: The de Bruijn factor. https://www.cs.ru.nl/~freek/factor/factor.pdf (2000)

Download references

Acknowledgements

Swiss National Science Foundation Grant 153217 “Formalising Computational Soundness for Protocol Implementations.” This work was partially done while the author was at ETH Zurich. We thank Ron Aharoni and Eli Berger for helping to clarify the weaknesses in the original proofs. S. Reza Sefidgar and the anonymous reviewers helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lochbihler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lochbihler, A. A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks with Applications to Probability Theory. J Autom Reasoning 66, 585–610 (2022). https://doi.org/10.1007/s10817-022-09616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-022-09616-4

Keywords

Navigation