Skip to main content

MizAR 40 for Mizar 40

Abstract

As a present to Mizar on its 40th anniversary, we develop an AI/ATP system that in 30 seconds of real time on a 14-CPU machine automatically proves 40 % of the theorems in the latest official version of the Mizar Mathematical Library (MML). This is a considerable improvement over previous performance of large-theory AI/ATP methods measured on the whole MML. To achieve that, a large suite of AI/ATP methods is employed and further developed. We implement the most useful methods efficiently, to scale them to the 150000 formulas in MML. This reduces the training times over the corpus to 1–3 seconds, allowing a simple practical deployment of the methods in the online automated reasoning service for the Mizar users (Miz \(\mathbb {A}\mathbb {R}\)).

References

  1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)

    Article  Google Scholar 

  2. Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR of LNCS, vol. 7180, pp. 37–45. Springer (2012)

  3. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS of LNCS, vol. 4963, pp. 337–340. Springer (2008)

  4. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  5. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC-6(4), 325–327 (1976)

    Article  Google Scholar 

  6. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs of London Mathematical Society Lecture Note Series, vol. 400. Cambridge University Press (2012)

  8. Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. CoRR (2015) arXiv:1501.02155

  9. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD of LNCS, vol. 1166, pp. 265–269. Springer (1996)

  10. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE of LNCS, vol. 6803, pp. 299–314. Springer (2011)

  11. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28, 11–21 (1972)

    Article  Google Scholar 

  12. Kaliszyk, C., Urban, J.: Automated reasoning service for HOL light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) MKM/Calculemus/DML of Lecture Notes in Computer Science, vol. 7961, pp. 120–135. Springer (2013)

  13. Kaliszyk, C., Urban, J.: PRocH: proof reconstruction for HOL Light. In: Bonacina, M.P. (ed.) CADE of Lecture Notes in Computer Science, vol. 7898, pp. 267–274. Springer (2013)

  14. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013 of EPiC Series. EasyChair, vol. 14, pp. 87–95 (2013)

  15. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014)

    MathSciNet  Article  Google Scholar 

  16. Kaliszyk, C., Josef, Urban.: HOL(y)Hammer: online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)

    MATH  Article  Google Scholar 

  17. Kaliszyk, C., Urban, J., Vyskocil, J.: Machine learner for automated reasoning 0.4 and 0.5. CoRR (2014). Accepted to PAAR’14 arXiv:1402. 2359

  18. Kaliszyk, C., Urban, J., Vyskocil, J.: Efficient semantic features for automated reasoning over large theories. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IICAI’15). to appear (2015)

  19. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV of Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer (2013)

  20. Kuehlwein, D., Urban, J.: Learning from multiple proofs: first experiments. In: Fontaine, P., Schmidt, R. A., Schulz, S. (eds.) PAAR-2012 of EPiC Series, vol. 21, pp. 82–94. EasyChair (2013)

  21. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proceeding of the 4th international conference on interactive theorem proving (ITP’13) of LNCS, vol. 7998, pp. 35–50. Springer (2013)

  22. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR of LNCS, vol. 7364, pp. 378–392. Springer (2012)

  23. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, pp. 45–50. ELRA, Valletta, Malta (2010)

  24. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Google Scholar 

  25. Schulz, S.: E - A brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)

    MATH  Google Scholar 

  26. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  27. Smolka, S.J., Blanchette, J.C.: Robust, semi-intelligible Isabelle proofs from ATP proofs. In: Blanchette, J. C., Urban, J. (eds.) PxTP 2013 of EPiC Series, vol. 14, pp. 117–132. EasyChair (2013)

  28. Josef, U.: Translating Mizar for first order theorem provers. In: MKM of LNCS, vol. 2594, pp. 203–215. Springer (2003)

  29. Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Reason. 33(3-4), 319–339 (2004)

    MATH  MathSciNet  Article  Google Scholar 

  30. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1-2), 21–43 (2006)

    MATH  Article  Google Scholar 

  31. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) ESARLT of CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007)

  32. Urban, J.: An overview of methods for large-theory automated theorem proving (Invited Paper). In: Höfner, P., McIver, A., Struth, G. (eds.) ATE Workshop, volume 760 of CEUR Workshop Proceedings, pp. 3–8. CEUR-WS.org (2011)

  33. Urban, J.: BliStr: the blind strategymaker, CoRR. arXiv:1301.2683. Accepted to PAAR’14 (2014)

  34. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50, 229–241 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  35. Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1 - machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR of LNCS, vol. 5195, pp. 441–456. Springer (2008)

  36. Urban, J., Vyskocil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M. P., Stickel, M. E. (eds.) Automated reasoning and mathematics: essays in memory of william McCune of LNAI, vol. 7788, pp. 240–257. Springer (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Urban.

Additional information

Josef Urban, funded by NWO grant Knowledge-based Automated Reasoning Radboud University, Nijmegen

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaliszyk, C., Urban, J. MizAR 40 for Mizar 40. J Autom Reasoning 55, 245–256 (2015). https://doi.org/10.1007/s10817-015-9330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-015-9330-8

Keywords

  • Automated reasoning
  • Formal mathematics
  • Mizar
  • Large theories
  • Machine learning
  • Artificial intelligence
  • Premise selection