Abstract
As a present to Mizar on its 40th anniversary, we develop an AI/ATP system that in 30 seconds of real time on a 14-CPU machine automatically proves 40 % of the theorems in the latest official version of the Mizar Mathematical Library (MML). This is a considerable improvement over previous performance of large-theory AI/ATP methods measured on the whole MML. To achieve that, a large suite of AI/ATP methods is employed and further developed. We implement the most useful methods efficiently, to scale them to the 150000 formulas in MML. This reduces the training times over the corpus to 1–3 seconds, allowing a simple practical deployment of the methods in the online automated reasoning service for the Mizar users (Miz \(\mathbb {A}\mathbb {R}\)).
References
Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)
Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR of LNCS, vol. 7180, pp. 37–45. Springer (2012)
de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS of LNCS, vol. 4963, pp. 337–340. Springer (2008)
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)
Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC-6(4), 325–327 (1976)
Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)
Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs of London Mathematical Society Lecture Note Series, vol. 400. Cambridge University Press (2012)
Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. CoRR (2015) arXiv:1501.02155
Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD of LNCS, vol. 1166, pp. 265–269. Springer (1996)
Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE of LNCS, vol. 6803, pp. 299–314. Springer (2011)
Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28, 11–21 (1972)
Kaliszyk, C., Urban, J.: Automated reasoning service for HOL light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) MKM/Calculemus/DML of Lecture Notes in Computer Science, vol. 7961, pp. 120–135. Springer (2013)
Kaliszyk, C., Urban, J.: PRocH: proof reconstruction for HOL Light. In: Bonacina, M.P. (ed.) CADE of Lecture Notes in Computer Science, vol. 7898, pp. 267–274. Springer (2013)
Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013 of EPiC Series. EasyChair, vol. 14, pp. 87–95 (2013)
Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014)
Kaliszyk, C., Josef, Urban.: HOL(y)Hammer: online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)
Kaliszyk, C., Urban, J., Vyskocil, J.: Machine learner for automated reasoning 0.4 and 0.5. CoRR (2014). Accepted to PAAR’14 arXiv:1402. 2359
Kaliszyk, C., Urban, J., Vyskocil, J.: Efficient semantic features for automated reasoning over large theories. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IICAI’15). to appear (2015)
Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV of Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer (2013)
Kuehlwein, D., Urban, J.: Learning from multiple proofs: first experiments. In: Fontaine, P., Schmidt, R. A., Schulz, S. (eds.) PAAR-2012 of EPiC Series, vol. 21, pp. 82–94. EasyChair (2013)
Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proceeding of the 4th international conference on interactive theorem proving (ITP’13) of LNCS, vol. 7998, pp. 35–50. Springer (2013)
Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR of LNCS, vol. 7364, pp. 378–392. Springer (2012)
Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, pp. 45–50. ELRA, Valletta, Malta (2010)
Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)
Schulz, S.: E - A brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, New York (2004)
Smolka, S.J., Blanchette, J.C.: Robust, semi-intelligible Isabelle proofs from ATP proofs. In: Blanchette, J. C., Urban, J. (eds.) PxTP 2013 of EPiC Series, vol. 14, pp. 117–132. EasyChair (2013)
Josef, U.: Translating Mizar for first order theorem provers. In: MKM of LNCS, vol. 2594, pp. 203–215. Springer (2003)
Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Reason. 33(3-4), 319–339 (2004)
Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1-2), 21–43 (2006)
Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) ESARLT of CEUR Workshop Proceedings, vol. 257. CEUR-WS.org (2007)
Urban, J.: An overview of methods for large-theory automated theorem proving (Invited Paper). In: Höfner, P., McIver, A., Struth, G. (eds.) ATE Workshop, volume 760 of CEUR Workshop Proceedings, pp. 3–8. CEUR-WS.org (2011)
Urban, J.: BliStr: the blind strategymaker, CoRR. arXiv:1301.2683. Accepted to PAAR’14 (2014)
Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50, 229–241 (2013)
Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1 - machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR of LNCS, vol. 5195, pp. 441–456. Springer (2008)
Urban, J., Vyskocil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M. P., Stickel, M. E. (eds.) Automated reasoning and mathematics: essays in memory of william McCune of LNAI, vol. 7788, pp. 240–257. Springer (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
Josef Urban, funded by NWO grant Knowledge-based Automated Reasoning Radboud University, Nijmegen
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kaliszyk, C., Urban, J. MizAR 40 for Mizar 40. J Autom Reasoning 55, 245–256 (2015). https://doi.org/10.1007/s10817-015-9330-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-015-9330-8
Keywords
- Automated reasoning
- Formal mathematics
- Mizar
- Large theories
- Machine learning
- Artificial intelligence
- Premise selection