Skip to main content

GRUNGE: A Grand Unified ATP Challenge

  • Conference paper
  • First Online:
Automated Deduction – CADE 27 (CADE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11716))

Included in the following conference series:

Abstract

This paper describes a large set of related theorem proving problems obtained by translating theorems from the HOL4 standard library into multiple logical formalisms. The formalisms are in higher-order logic (with and without type variables) and first-order logic (possibly with types, and possibly with type variables). The resultant problem sets allow us to run automated theorem provers that support different logical formalisms on corresponding problems, and compare their performances. This also results in a new “grand unified” large theory benchmark that emulates the ITP/ATP hammer setting, where systems and metasystems can use multiple formalisms in complementary ways, and jointly learn from the accumulated knowledge.

Supported by the ERC grant no. 649043 AI4REASON and no. 714034 SMART, by the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/0000466, the European Regional Development Fund, and the National Science Foundation Grant 1730419 - “CI-SUSTAIN: StarExec: Cross-Community Infrastructure for Logic Solving”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1291 theorems were not included due to dependencies being erased during the build of the HOL4 library.

  2. 2.

    http://www.tptp.org/CASC/27/TrainingData.HL4.tgz.

References

  1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  3. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_3

    Chapter  Google Scholar 

  4. Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_14

    Chapter  Google Scholar 

  5. Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_41. http://christoph-benzmueller.de/papers/C25.pdf

    Chapter  Google Scholar 

  6. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_34

    Chapter  MATH  Google Scholar 

  7. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reason. 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-5787/4593

    Article  MathSciNet  MATH  Google Scholar 

  8. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_29

    Chapter  Google Scholar 

  9. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_14

    Chapter  Google Scholar 

  10. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

    Chapter  Google Scholar 

  11. Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_14

    Chapter  MATH  Google Scholar 

  12. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5, 56–68 (1940)

    Article  MathSciNet  Google Scholar 

  13. Cruanes, S.: Extending superposition with integer arithmetic, structural induction, and beyond. (Extensions de la Superposition pour l’Arithmétique Linéaire Entière, l’Induction Structurelle, et bien plus encore). Ph.D. thesis, École Polytechnique, Palaiseau, France (2015). https://tel.archives-ouvertes.fr/tel-01223502

  14. Czajka, L.: Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, Saint Petersburg, FL, USA, 20–22 January 2016, pp. 49–57. ACM (2016). https://doi.org/10.1145/2854065.2854069

  15. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon modulo: when achilles outruns the tortoise using deduction modulo. In: McMillan et al. [34], pp. 274–290. https://doi.org/10.1007/978-3-642-45221-5_20

  16. Gauthier, T., Kaliszyk, C.: Premise selection and external provers for HOL4. In: Certified Programs and Proofs (CPP 2015). ACM (2015). https://doi.org/10.1145/2676724.2693173

  17. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4 tactics. In: Eiter, T., Sands, D. (eds.) 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21, Maun, Botswana, 7–12 May 2017. EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017). http://www.easychair.org/publications/paper/340355

  18. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove with tactics. CoRR (2018). http://arxiv.org/abs/1804.00596

  19. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993). http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html

  20. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031814

    Chapter  Google Scholar 

  21. Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 313–327. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61511-3_97

    Chapter  Google Scholar 

  22. Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 135–214. Elsevier (2014). https://doi.org/10.1016/B978-0-444-51624-4.50004-6

  23. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. Design and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical reports, pp. 56–68 (2003)

    Google Scholar 

  24. Hurd, J.: System description: the metis proof tactic. In: Benzmueller, C., Harrison, J., Schurmann, C. (ed.) Workshop on Empirically Successful Automated Reasoning in Higher-Order Logic (ESHOL), pp. 103–104 (2005). https://arxiv.org/pdf/cs/0601042

  25. Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_14

    Chapter  Google Scholar 

  26. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 1635, pp. 41–55 (2016)

    Google Scholar 

  27. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014). https://doi.org/10.1007/s10817-014-9303-3

    Article  MathSciNet  MATH  Google Scholar 

  28. King, D., Arthan, R., Winnersh, I.: Development of practical verification tools. ICL Syst. J. 11, 106–122 (1996)

    Google Scholar 

  29. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_24

    Chapter  Google Scholar 

  30. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

    Chapter  Google Scholar 

  31. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 179–192. ACM (2014). https://doi.org/10.1145/2535838.2535841

  32. Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_5

    Chapter  Google Scholar 

  33. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/

  34. McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.): LPAR 2013. LNCS, vol. 8312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5

    Book  Google Scholar 

  35. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)

    Article  MathSciNet  Google Scholar 

  36. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  37. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation, PLDI 1988, pp. 199–208. ACM, New York (1988). https://doi.org/10.1145/53990.54010

  38. Pitts, A.: The HOL logic. In: Gordon and Melham [19]. http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html

  39. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_20

    Chapter  MATH  Google Scholar 

  40. Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_28

    Chapter  Google Scholar 

  41. Schulz, S.: System description: E 1.8. In: McMillan et al. [34], pp. 735–743. https://doi.org/10.1007/978-3-642-45221-5_49

  42. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_6

    Chapter  Google Scholar 

  43. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_8. http://christoph-benzmueller.de/papers/C70.pdf

    Chapter  Google Scholar 

  44. Steen, A., Wisniewski, M., Benzmüller, C.: Going polymorphic - TH1 reasoning for Leo-III. In: Eiter, T., Sands, D., Sutcliffe, G., Voronkov, A. (eds.) IWIL@LPAR 2017 Workshop and LPAR-21 Short Presentations, Maun, Botswana, 7–12 May 2017, vol. 1. Kalpa Publications in Computing, EasyChair (2017). http://www.easychair.org/publications/paper/346851

  45. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101 (2016)

    MATH  Google Scholar 

  46. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

    Article  MathSciNet  Google Scholar 

  47. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_32

    Chapter  Google Scholar 

  48. Sutcliffe, G.: The 9th IJCAR automated theorem proving system competition - CASC-J9. AI Commun. 31(6), 495–507 (2018). https://doi.org/10.3233/AIC-180773

    Article  MathSciNet  MATH  Google Scholar 

  49. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. Int. J. Softw. Tools Technol. Transfer 13(5), 419–429 (2011). https://doi.org/10.1007/s10009-011-0188-8

    Article  Google Scholar 

  50. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_10

    Chapter  Google Scholar 

  51. Xu, Y., Liu, J., Chen, S., Zhong, X., He, X.: Contradiction separation based dynamic multi-clause synergized automated deduction. Inf. Sci. 462, 93–113 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Urban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brown, C.E., Gauthier, T., Kaliszyk, C., Sutcliffe, G., Urban, J. (2019). GRUNGE: A Grand Unified ATP Challenge. In: Fontaine, P. (eds) Automated Deduction – CADE 27. CADE 2019. Lecture Notes in Computer Science(), vol 11716. Springer, Cham. https://doi.org/10.1007/978-3-030-29436-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29436-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29435-9

  • Online ISBN: 978-3-030-29436-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics