Skip to main content

Multi-Completion with Termination Tools

Abstract

Knuth–Bendix completion is a classical calculus in automated deduction for transforming a set of equations into a confluent and terminating set of directed equations which can be used to decide the induced equational theory. Multi-completion with termination tools constitutes an approach that differs from the classical method in two respects: (1) external termination tools replace the reduction order—a typically critical parameter—as proposed by Wehrman et al. (2006), and (2) multi-completion as introduced by Kurihara and Kondo (1999) is used to keep track of multiple orientations in parallel while exploiting sharing to boost efficiency. In this paper we describe the inference system, give the full proof of its correctness and comment on completeness issues. Critical pair criteria and isomorphisms are presented as refinements together with all proofs. We furthermore describe the implementation of our approach in the tool \(\mathsf{mkbTT}\), present extensive experimental results and report on new completions.

References

  1. Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving termination of context-sensitive rewriting with MU-TERM. In: Proc. 6th PROLE. ENTCS, vol. 188, pp. 105–115 (2007)

  2. Bachmair, L.: Canonical equational proofs. In: Progress in Theoretical Computer Science. Birkhäuser (1991)

  3. Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6(1), 1–18 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  4. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. J. ACM 41(2), 236–276 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  5. Bündgen, R., Göbel, M., Küchlin, W.: A fine-grained parallel completion procedure. In: Proc. 7th ISSAC, pp. 269–277 (1994)

  6. Christian, J.: Fast Knuth–Bendix completion. In Proc. 3rd RTA. LNCS, vol. 355, pp. 551–555 (1989)

  7. Dershowitz, N., Marcus, L., Tarlecki, A.: Existence, uniqueness, and construction of rewrite systems. SIAM J. Comput. 17, 629–639 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  8. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Proc. 3rd IJCAR. LNAI, vol. 4130, pp. 281–286 (2006)

  9. Graf, P.: Term indexing. In: LNAI, vol. 1053. Springer (1996)

  10. Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need be considered in the Knuth–Bendix completion procedure. J. Symb. Comput. 6(1), 19–36 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  11. Klein, D., Hirokawa, N.: Maximal completion (system description). In: Proc. 22nd RTA. LIPIcs, vol. 10 pp. 71–80 (2011)

  12. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

  13. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proc. 20th RTA. LNCS, vol. 5595, pp. 295–304 (2009)

  14. Küchlin, W.: A confluence criterion based on the generalised Newman lemma. In: Proc. 2nd EUROCAL. LNCS, vol. 204, pp. 390–399 (1985)

  15. Kurihara, M., Kondo, H.: Completion for multiple reduction orderings. J. Autom. Reason. 23(1), 25–42 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  16. Lescanne, P.: REVE: a rewrite rule laboratory. In: Proc. 4th International Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 247, pp. 482–483 (1987)

  17. Marché, C.: Normalized rewriting: An unified view of Knuth–Bendix completion and Gröbner bases computation. In: Symbolic Rewriting Techniques. Progress in Computer Science and Applied Logic, vol. 15, pp. 193–208. Birkhäuser (1998)

  18. McCune, W.: Experiments with discrimination-tree indexing and path indexing for term retrieval. J. Autom. Reason. 9(2), 147–167 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  19. Métivier, Y.: About the rewriting systems produced by the Knuth–Bendix completion algorithm. Inform. Process. Lett. 16(1), 31–34 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  20. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of Automated Reasoning, pp. 371–443. Elsevier Science (2001)

  21. Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termination tools (system description). In: Proc. 4th IJCAR. LNAI, vol. 5195, pp. 306–312 (2008)

  22. Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Constraint-based multi-completion procedures for term rewriting systems. IEICE Trans. Electron. E92-D(2), 220–234 (2009)

    Google Scholar 

  23. Sattler-Klein, A.: About changing the ordering during Knuth–Bendix completion. In: Proc. 11th STACS. LNCS, vol. 775, pp. 175–186 (1994)

  24. Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Handbook of Automated Reasoning, pp. 1853–1964. Elsevier Science (2001)

  25. Steinbach, J., Kühler, U.: Check Your Ordering—Termination Proofs and Open Problems. Technical Report SR-90-25, Universität Kaiserslautern (1990)

  26. Stump, A., Löchner, B.: Knuth–Bendix completion of theories of commuting group endomorphisms. Inform. Process. Lett. 98(5), 195–198 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  27. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

    MATH  Article  Google Scholar 

  28. Voronkov, A.: The anatomy of Vampire. J. Autom. Reason. 15(2), 237–265 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  29. Voronkov, A.: Algorithms, datastructures, and other issues in efficient automated deduction. In: Proc. 1st IJCAR. LNCS, vol. 2083, pp. 13–28 (2001)

  30. Wehrman, I.: Knuth–Bendix completion with modern termination checking. Master’s thesis, Washington University in St. Louis, 2006. Technical report WUCSE-2006-45

  31. Wehrman, I., Stump, A.: Mining propositional simplification proofs for small validating clauses. In: Proc. 3rd PDPAR. ENTCS, vol. 144, pp. 79–91 (2005)

  32. Wehrman, I., Stump, A., Westbrook, E.M.: Slothrop: Knuth–Bendix completion with a modern termination checker. In: Proc. 17th RTA. LNCS, vol. 4098, pp. 287–296 (2006)

  33. Winkler, F.: Reducing the complexity of the Knuth–Bendix completion-algorithm: a “unification” of different approaches. In: Proc. 2nd EUROCAL. LNCS, vol. 204, pp. 378–389 (1985)

  34. Winkler, S., Middeldorp, A.: Termination tools in ordered completion. In: Proc. 5th IJCAR. LNAI, vol. 6173, pp. 518–532 (2010)

  35. Winkler, S., Middeldorp, A.: AC completion with termination tools. In: Proc. 23rd CADE. LNAI, vol. 6803, pp. 492–498 (2011)

  36. Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Optimizing mkbTT (system description). In: Proc. 21st RTA. LIPIcs, vol. 6, pp. 373–384 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Winkler.

Additional information

The first author is supported by a DOC-fFORTE grant of the Austrian Academy of Sciences.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Winkler, S., Sato, H., Middeldorp, A. et al. Multi-Completion with Termination Tools. J Autom Reasoning 50, 317–354 (2013). https://doi.org/10.1007/s10817-012-9249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-012-9249-2

Keywords

  • Term rewriting
  • Knuth–Bendix completion
  • Termination tools
  • Multi-completion