Skip to main content
Log in

A Review of Methods to Analyze Archaeological Lime Production: Investigating Raw Materials Selection and Firing Conditions

  • Research
  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Lime-based materials are found in archaeological contexts across many world regions. The earliest evidence of lime production was discovered in the Levant dating to about 16,000 cal BP. Methods for transforming limestone, shells, and corals into slaked lime varied depending on region, culture, and period. Similarly, the use of lime had an extensive variation of applications such as hafting, plastering, mortars, flooring, plastering skulls, decorating, and making frescos. Each step of the lime production process—from raw materials sourcing to the mixing of finished materials—results in specific archaeological assemblages, each capable of delivering critical insight into the knowledge of the people who created them. Here, we review approaches and methodologies used to analyze each production step, and, specifically, those targeting raw materials selection and firing conditions. For investigating effectively raw materials selection and firing conditions of archaeological lime-based materials, we propose a methodological approach based on the integration of petrography and Fourier transform infrared microscopy (mFTIR) that uses chemical and mineralogical reference libraries prepared using experimental lime produced with provenienced raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References    

  • Abrams, E. M., & Freter, A. (1996). A late classic lime-plaster kiln from the Maya centre of Copan, Honduras. Antiquity, 70(268), 422–428. https://doi.org/10.1017/S0003598X00083381

    Article  Google Scholar 

  • Abrams, E. M., Parhamovich, J., Butcher, J. A., & McCord, B. (2012). Chemical composition of architectural plaster at the Classic Maya kingdom of Piedras Negras, Guatemala. Journal of Archaeological Science, 39(5), 1648–1654. https://doi.org/10.1016/j.jas.2012.01.002

    Article  Google Scholar 

  • Affonso, M. (2001). Neolithic lime plasters and pozzolanic reactions: Are they occasional occurrences? Lux Orientis: Archäologie Zwischen Asien Und Europa, Festschrift Für Harald Hauptmann, 65, 9–13.

    Google Scholar 

  • Ahern, K. R. (2021). Analysis of late preclassic period lime plaster floors at Holmul. Guatemala. Journal of Archaeological Science: Reports, 36, 102883. https://doi.org/10.1016/j.jasrep.2021.102883

    Article  Google Scholar 

  • Alonso-Olazabal, A., Ortega, L. A., Zuluaga, M. C., Ponce-Antón, G., Jiménez Echevarría, J., & Alonso Fernández, C. (2020). Compositional characterization and chronology of roman mortars from the archaeological site of Arroyo De La Dehesa De Velasco (Burgo De Osma-Ciudad De Osma, Soria, Spain). Minerals, 10(5), 393. https://doi.org/10.3390/min10050393

    Article  Google Scholar 

  • Artioli, G. (2010). Scientific methods and cultural heritage: An introduction to the application of materials science to archaeometry and conservation science. Oxford University Press.

    Book  Google Scholar 

  • Asscher, Y., & Goren, Y. (2016). A rapid on-site method for micromorphological block impregnation and thin section preparation. Geoarchaeology, 31, 324–331. https://doi.org/10.1002/gea.21561

    Article  Google Scholar 

  • Bar-Yosef, O., & Goring-Morris, A. N. (1977). Geometric Kebaran A occurrences. In O. Bar Yosef, & J. L. Phillips (Eds.), Prehistoric investigations in Gebel Maghara, Northeastern Sinai. Qedem 7 (pp. 42-88). Monographs of the Institute of Archaeology, Jerusalem, The Hebrew University.

  • Berna, F. (2017). Chapter 39: FTIR microscopy. In C. Nicosia & G. Stoops (Eds.), Encyclopedia of Archaeological Soil and Sediment Micromorphology (pp. 411–415). Wiley.

    Chapter  Google Scholar 

  • Boness, D., Panagiotopoulos, D., & Goren, Y. (2017). Minoan plaster technology as evident from the ‘precinct’ structure at Koumasa, Crete: A microarchaeological study. Journal of Archaeological Science: Reports, 14, 392–408. https://doi.org/10.1016/j.jasrep.2017.06.001

    Article  Google Scholar 

  • Brysbaert, A., Melessanaki, K., & Anglos, D. (2006). Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS). Journal of Archaeological Science, J3(8), 1095–1104. https://doi.org/10.1016/j.jas.2005.11.016

    Article  Google Scholar 

  • Canti, M. G. (2003). Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. CATENA, 54(3), 339–361. https://doi.org/10.1016/S0341-8162(03)00127-9

    Article  Google Scholar 

  • Carran, D., Hughes, J., Leslie, A., & Kennedy, C. (2012). A short history of the use of lime as a building material-beyond Europe and North America. A short history of the use of lime as a building material beyond Europe and North America. Conservation, Analysis, and Restoration, 6(2), 117–146. https://doi.org/10.1080/15583058.2010.511694

    Article  Google Scholar 

  • Cazalla, O., Rodriguez-Navarro, C., Sebastian, E., Cultrone, G., & De la Torre, M. J. (2000). Aging of lime putty: Effects on traditional lime mortar carbonation. Journal of the American Ceramic Society, 83(5), 1070–1076.

  • Cazalla, O., Rodriguez-Navarro, C., Sebastian, E., Cultrone, G., & Torre, M. J. (2004). Aging of lime putty: Effects on traditional lime mortar carbonation. Journal of the American Ceramic Society, 83(5), 1070–1076. https://doi.org/10.1111/j.1151-2916.2000.tb01332.x

    Article  Google Scholar 

  • Černÿ, R., Kunca, A., Tydlitát, V., Drchalová, J., & Rovnaníková, P. (2006). Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters. Construction and Building Materials, 20(10), 849–857. https://doi.org/10.1016/j.conbuiIdmat.2005.07.002

    Article  Google Scholar 

  • Chu, V., Regev, L., Weiner, S., & Boaretto, E. (2008). Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. Journal of Archaeological Science, 35(4), 905–911. https://doi.org/10.1016/j.jas.2007.06.024

    Article  Google Scholar 

  • Clarke, J. (2012). Decorating the Neolithic: An evaluation of the use of plaster in the enhancement of daily life in the middle pre-pottery Neolithic B of the Southern Levant. Cambridge Archaeological Journal, 22(2), 177–186. https://doi.org/10.1017/S0959774312000224

    Article  Google Scholar 

  • Crupi, V., Allodi, V., Bottari, C., D’Amico, F., Galli, G., Gessini, A., Russa, M. F. L., Longo, F., Majolino, D., Mariotto, G., Masciovecchio, C., Pezzino, A., Rossi, B., Ruffolo, S. A., & Venuti, V. (2016). Spectroscopic investigation of Roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses. Vibrational Spectroscopy, 83, 78–84. https://doi.org/10.1016/J.VIBSPEC.2016.01.009

    Article  Google Scholar 

  • Cuif, J.-P., Dauphin, Y., Berthet, P., & Jegoudez, J. (2004). Associated water and organic compounds in coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry, Geochemistry, Geophysics. Geosystems, 5, Q11011. https://doi.org/10.1029/2004GC000783

    Article  Google Scholar 

  • Daugbjerg, T. S., Lichtenberger, A., Lindroos, A., Michalska, D., Raja, R., & Olsen, J. (2022). Radiocarbon dating of lime plaster from a Roman period cistern in ancient Gerasa, Jerash in Jordan. Journal of Archaeological Science: Reports, 42, 103373. https://doi.org/10.1016/j.jasrep.2022.103373

    Article  Google Scholar 

  • DeLaine, J. (2021). Production, transport and on-site organisation of Roman mortars and plasters. Archaeological and Anthropological Sciences, 13, 1–17. https://doi.org/10.1007/s12520-021-01401-5

    Article  Google Scholar 

  • Delatte, N. H. (2001). Lessons from Roman cement and concrete. Journal of Professional Issues in English Educational Practice, 127(3), 109–115.

    Article  Google Scholar 

  • Dix, B. (1982). The manufacture of lime and its uses in the western Roman provinces. Oxford Journal of Archaeology, 1(3), 331–346. https://doi.org/10.1111/j.1468-0092.1982.tb00318.x

    Article  Google Scholar 

  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In classification of carbonate rocks. In W. E. Ham (Ed.), Tulsa, American association of petroleum geologist memoirs (pp. 108–121).

  • Drake, B. L, Wills, W.H., Hamilton, M. I. et al. (2014). Strontium iso-topes and the reconstruction of the Chaco regional system: Evaluating uncertainty with Bayesian mixing models. PLoS ONE, 9(5), e95580.

  • Edwards, H. G. M., & Farwell, D. W. (2008). The conservational heritage of wall paintings and buildings: An FT-Raman spectroscopic study of prehistoric, Roman, Mediaeval and Renaissance lime substrates and mortars. Journal of Raman Spectroscopy, 39(8 SPEC. ISS.), 985–992. https://doi.org/10.1002/jrs.1917

    Article  Google Scholar 

  • Eliyahu-Behar, A., Shai, I., Regev, L., Ben-ShIomo, D., Albaz, S., Maeir, A. M., & Greenfield, H. J. (2016). Early Bronze Age pottery covered with lime-plaster: Technological observations. Tel Aviv, 43(1), 27–42. https://doi.org/10.1080/03344355.2016.1161373

    Article  Google Scholar 

  • Elsen, J. (2006). Microscopy of historic mortars—a review. Cement and Concrete Research, 36(8), 1416–1424. https://doi.org/10.1016/j.cemconres.2005.12.006

    Article  Google Scholar 

  • Endlicher, G., & Tillmann, A. (1997). Lime plaster as an adhesive for halting eighteenth-dynasty flint sickles from Tell el Dab’ a, Eastern Nile Delta (Egypt). Archaeometry, 39(2), 333–342. https://doi.org/10.1111/j.1475-4754.1997.tb00810.x

    Article  Google Scholar 

  • Embry, A. F., & Klovan, J. E. (1971). A late devonian reef tract on northeasterm banks island. Canadian Petroleum Geology, 19, 730–781.

  • Flügel, E., & Munnecke, A. (2010). Microfacies of carbonate rocks : Analysis, interpretation and application (2nd ed.). Springer. https://doi.org/10.1007/978-3-642-03796-2

    Book  Google Scholar 

  • Freire, M. T., Santos Silva, A., do Rosário Veiga, M., & de Brito, J. (2015). The history of Portuguese interior plaster coatings: A mineralogical survey using XRD. Archaeometry, 57, 147–165. https://doi.org/10.1111/arcm.12130

    Article  Google Scholar 

  • Frierman, J. D. (1971). Lime burning as the precursor of fired ceramics. Israel Exploration Journal, 21(4), 212–216.

    Google Scholar 

  • Friesem, D. E., Abadi, I., Shaham, D., & Grosman, L. (2019). Lime plaster cover of the dead 12,000 years ago–New evidence for the origins of lime plaster technology. Evolutionary Human Sciences, 1, e9. https://doi.org/10.1017/ehs.2019.9

    Article  Google Scholar 

  • Folk, R. L. (1962). Spectral subdivision of limestones types. In W. E. Ham (Ed,). Classification of carbonates rocks. A Symposium, tulsa, American association of petroleum geologist memoirs (pp. 62–84).

  • Gibson, S. (1984). Lime kilns in North-East Jerusalem. Palestine Exploration Quarterly, 116(2), 94–102. https://doi.org/10.1179/peq.1984.116.2.94

    Article  Google Scholar 

  • Gliozzo, E., Cavari, F., Damiani, D., & Memmi, I. (2012). Pigments and plasters from the Roman settlement of Thamusida (Rabat, Morocco). Archaeometry, 54(2), 278–293. https://doi.org/10.1111/j.1475-4754.2011.00617

    Article  Google Scholar 

  • Goren, Y. (2014). The operation of a portable petrographic thin-section laboratory for field studies. New York Microscopical Society Newsletter, 2(2014), 1–7.

    Google Scholar 

  • Goren, Y., & Goldberg, P. (1991). Special studies: Petrographic thin sections and the development of Neolithic plaster production in Northern Israel. Journal of Field Archaeology, 18(1), 131–140. https://doi.org/10.1179/009346991791548735

    Article  Google Scholar 

  • Goren, Y., Goring-Morris, A. N., & Segal, I. (2001). The technology of skull modeling in the Pre-Pottery Neolithic B (PPNB): Regional variability, the relation of technology and iconography and their archaeological implications. Journal of Archaeological Science, 28, 671–690. 

  • Goren, Y., & Goring-Morris, A. N. (2008). Early pyrotechnology in the Near East: Experimental lime-plaster production at the pre-pottery Neolithic B site of Kfar HaHoresh, Israel. Geoarchaeology, 23(6), 779–798. https://doi.org/10.1002/gea.20241

    Article  Google Scholar 

  • Gourdin, W. H., & Kingery, W. D. (1975). The beginnings of pyrotechnology: Neolithic and Egyptian lime plaster. Journal of Field Archaeology, 2(1–2), 133–150. https://doi.org/10.1179/009346975791491277

    Article  Google Scholar 

  • Grono, E., Piper, P. J., Kinh, D. N., Bellwood, P., Denham, T., & Friesem, D. E. (2022). Early settlement construction in Southeast Asia: Lime mortar floor sequences at Loc Giang, southern Vietnam. Antiquity, 96(390), 1538–1554. https://doi.org/10.15184/aqy.2022.139

    Article  Google Scholar 

  • Hauptmann, A., & Yalcin, Ü. (2000). Lime plaster, cement and the first puzzolanic reaction. Paléorient, 26(2), 61–68.

    Article  Google Scholar 

  • Heberling, F., Trainor, T. P., Lützenkirchen, J., Eng, P., Denecke, M. A., & Bosbach, D. (2011). Structure and reactivity of the calcite-water interface. Journal of Colloid and Interface Science, 354(2), 843–857. https://doi.org/10.1016/j.jcis.2010.10.047

    Article  Google Scholar 

  • Hughes, J. J., Leslie, A. B., & Callebaut, K. (2001). The petrography of lime inclusions in historic lime based mortars. In Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials (pp 359–364). Athens.

  • Ichumbaki, E. B., & Pollard, E. (2015). Potsherds coated with lime mortar along the East African coast: Their origin and significance. African Archaeological Review, 32(3), 443–463. https://doi.org/10.1007/s10437-015-9196-5

    Article  Google Scholar 

  • Jackson, M. D., Landis, E. N., Brune, P. F., Vitti, M., Chen, H., Li, Q., Kunz, M., Wenk, H. R., Monteiro, P. J. M., & Ingraffea, A. R. (2014). Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18484–18489. https://doi.org/10.1073/pnas.1417456111

    Article  Google Scholar 

  • Kabacińska, Z., Krzyminiewski, R., Michalska, D., & Dobosz, B. (2014). Investigation of lime mortars and plasters from archaeological excavations in Hippos (Israel) using Electron Paramagnetic Resonance. Geochronometria, 41(2), 112–120. https://doi.org/10.2478/s13386-013-0151-4

    Article  Google Scholar 

  • Karkanas, P. (2007). Identification of lime plaster in prehistory using petrographic methods: A review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology, 22(7), 775–796. https://doi.org/10.1002/gea.20186

    Article  Google Scholar 

  • Karkanas, P., & Efstratiou, N. (2009). Floor sequences in Neolithic Makri, Greece: Micromorphology reveals cycles of renovation. Antiquity, 83(322), 955–967. https://doi.org/10.1017/S0003598X00099270

    Article  Google Scholar 

  • Kaszowska, Z., Malek, K., Staniszewska-Slezak, E., & Niedzielska, K. (2016). Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochimica Acta - Pad a: Molecular and Biomolecular Spectroscopy, 169, 7–15. https://doi.org/10.1016/j.saa.2016.06.012

    Article  Google Scholar 

  • Kingery, W. D., Vandiver, P. B., & Prickett, M. (1988). The beginnings of pyrotechnology, part ii: Production and use of lime and gypsum plaster in the pre-pottery Neolithic Near East. Journal of Field Archaeology, 15(2), 219–243. https://doi.org/10.1179/009346988791974501

    Article  Google Scholar 

  • Kita, Y. (2013). The functions of vegetable mucilage in lime and earth mortars-A review. In Proceedings of the 3rd Historic Mortars Conference HMC13 (pp. 1–6). University of the West of Scotland.

  • Leone, G., De Vita, A., Magnani, A., & Rossi, C. (2016). Characterization of archaeological mortars from Herculaneum. Thermochimica Acta, 624, 86–94. https://doi.org/10.1016/j.tca.2015.12.003

    Article  Google Scholar 

  • Leslie, A. B., & Hughes, J. J. (2002). Binder microstructure in lime mortars: Implications for the interpretation of analysis results. Quarterly Journal of Engineering Geology and Hydrogeology, 35(3), 257–263. https://doi.org/10.1144/1470-923601-27

    Article  Google Scholar 

  • Mackinnon, J. J., & May, E. M. (1990). Small-scale Maya lime making in Belize: Ancient and modern. Ancient Mesoamerica, 1(2), 197–203. https://doi.org/10.1017/S0956536100000213

    Article  Google Scholar 

  • Madkour, F. S., & Khallaf, M. K. (2012). Degradation processes of Egyptian faience tiles in the step pyramid at Saqqara. Procedia - Social and Behavioral Sciences, 68, 63–76. https://doi.org/10.1016/j.sbspro.2012.12.207

    Article  Google Scholar 

  • Malinowski, E. S., & Hansen, T. S. (2011). Ewa Sandström Malinowski & Torben Seir Hansen (2011) Hot lime mortar in conservation—Repair and replastering of the façades of Läckö Castle. Journal of Architectural Conservation, 17(1), 95–118. https://doi.org/10.1080/13556207.2011.10785084

    Article  Google Scholar 

  • Maor, Y., Toffolo, M. B., Feldman, Y., Vardi, J., Khalaily, H., & Asscher, Y. (2023). Dolomite in archaeological plaster: An FTIR study of the plaster floors at Neolithic Motza. Israel. Journal of Archaeological Science: Reports, 48, 103862. https://doi.org/10.1016/j.jasrep.2023.103862

    Article  Google Scholar 

  • Maravelaki, P. N., Kapetanaki, K., Papayianni, I., Ioannou, I., Faria, P., Alvarez, J., Stefanidou, M., Nunes, C., Theodoridou, M., Ferrara, L., & Toniolo, L. (2023). RILEM TC 277-LHS report: Additives and admixtures for modern lime-based mortars. Materials and Structures, 56, 106. https://doi.org/10.1617/s11527-023-02175-z

    Article  Google Scholar 

  • Marić-Stojanović, M., Bajuk-Bogdanović, D., Uskoković-Marković, S., & Holclajtner- Antunović, I. (2018). Spectroscopic analysis of XIV century wall paintings from Patriarchate of Peć Monastery, Serbia. Spectrochimica Acta - Pad a: Molecular and Biomolecular Spectroscopy, 191, 469–477. https://doi.org/10.1016/j.saa.2017.10.043

    Article  Google Scholar 

  • Matias, G., Faria, P., & Torres, I. (2014). Lime mortars with heat treated clays and ceramic waste: A review. In Construction and Building Materials, 73, 125–136. https://doi.org/10.1016/j.conbuiIdmat.2014.09.028. Elsevier Ltd.

    Article  Google Scholar 

  • Mazzullo, S. J., Teal, C. S., & Graham, E. (1994). Mineralogic and crystallographic evidence of lime processing, Santa Cruz Maya Site (Classic to Postclassic), Ambergris Caye. Belize. Journal of Archaeological Science, 21(6), 785–795. https://doi.org/10.1006/jasc.1994.1076

    Article  Google Scholar 

  • Miksa, E. J., & Heidke, J. M. (2001). It all comes out in the wash: Actualistic petrofacies modeling of temper provenance, Tonto Basin, Arizona, USA. Geoarchaeology An International Journal, 16(2), 177–222. https://doi.org/10.1002/1520-6548(200102)16:2%3c177::AID-GEA1001%3e3.0.CO;2-T

    Article  Google Scholar 

  • Miriello, D., Bloise, A., Crisci, G. M., Apollaro, C., & La Marca, A. (2011). Characterisation of archaeological mortars and plasters from Kyme (Turkey). Journal of Archaeological Science, 38(4), 794–804. https://doi.org/10.1016/j.jas.2010.11.002

    Article  Google Scholar 

  • Miriello, D., Pingarrón, L. B., Pingarrón, A. B., Barca, D., Bloise, A., Parra, J. R. G., & Pecci, A. (2021). Hydraulicity of lime plasters from Teotihuacan, Mexico: A microchemical and microphysical approach. Journal of Archaeological Science, 133, 105453. https://doi.org/10.1016/j.jas.2021.105453

    Article  Google Scholar 

  • Molle, G., Wadrawane, J. M., Lagarde, L., & Wright, D. (2023). The sacred stone from the sea. Archaeological and ethnographic perspectives on the ritual value of coral across the Pacific. Archaeology in Oceania, 58, 40–55. https://doi.org/10.1002/arco.5284

    Article  Google Scholar 

  • Murakami, T. (2016). Materiality, regimes of value, and the politics of craft production, exchange, and consumption: A case of lime plaster at Teotihuacan, Mexico. Journal of Anthropological Archaeology, 42, 56–78. https://doi.org/10.1016/j.jaa.2016.03.003

    Article  Google Scholar 

  • Murphy, C. P. (1986). Thin section preparation of soils and sediments. Berkhamsted: AB Academic Press. 

  • Oleson, J. P., & Branton, G. (1992). The technology of King Herod’s harbour. In R. L. Vann (Ed.), Caesarea Papers: Straton’s Tower, Herod’s Harbour, and Roman and Byzantine Caesarea (pp. 49–67). Journal of Roman Archaeology.

    Google Scholar 

  • Orsingher, A., Amicone, S., Kamlah, J., Sader, H., & Berthold, C. (2020). Phoenician lime for Phoenician wine: Iron Age plaster from a wine press at Tell el-Burak. Lebanon. Antiquity, 94(377), 1224–1244. https://doi.org/10.15184/aqy.2020.4

    Article  Google Scholar 

  • Papayianni, I., Pachta, V., & Stefanidou, M. (2013). Analysis of ancient mortars and design of compatible repair mortars: The case study of Odeion of the archaeological site of Dion. Construction and Building Materials, 40, 84–92. https://doi.org/10.1016/j.conbuiIdmat.2012.09.086

    Article  Google Scholar 

  • Pavia, S., Veiga, R., Hughes, J., Pesce, G., Valek, J., Alvarez, J. I., Faria, P., & Padovnik, A. (2023). RILEM TC 277-LHS report: How hot are hot-lime-mixed mortars? A review. Materials and Structures, 56, 87. https://doi.org/10.1617/s11527-023-02157-1

    Article  Google Scholar 

  • Pearson, M. (1986). Archaeological interpretation and ethnographic analogy: The lime industry in Western Australia. Archaeology in Oceania, 21(1), 94–102.

    Article  Google Scholar 

  • Philokyprou, M. (2012a). The earliest use of lime and gypsum mortars in Cyprus. RILEM Book Series, 7, 25–35. https://doi.org/10.1007/978-94-007-4635-03

  • Philokyprou, M. (2012b). The beginnings of pyrotechnology in Cyprus. International Journal of Architectural Heritage, 6(2), 172–199.

  • Poduska, K. M., Regev, L., Berna, F., Mintz, E., Milevski, I., Khalaily, H., Weiner, S., & Boaretto, E. (2012). Plaster characterization at the PPNB site of Yiftahel (Israel) including the use of 14C: Implications for plaster production, preservation, and dating. Radiocarbon, 54(3–4), 887–896. https://doi.org/10.1017/S0033822200047536

    Article  Google Scholar 

  • Quinn, P. S. (2008). The occurrence and research potential of microfossils in inorganic archaeological materials. Geoarchaeology, 23(2), 275–291. https://doi.org/10.1002/gea.20213

    Article  Google Scholar 

  • Regev, L., Poduska, K. M., Addadi, L., Weiner, S., & Boaretto, E. (2010). Distinguishing between calcites formed by different mechanisms using infrared spectrometry: Archaeological applications. Journal of Archaeological Science, 3Z(12), 3022–3029. https://doi.org/10.1016/j.jas.2010.06.027

    Article  Google Scholar 

  • Rızaoğlu, T., Çoşkun, C., & Palka, D. (2018). Recycling of natural stone wastes of workshops in Kahramanmaraª/Turkey as mineral plaster. In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Sofia: STEF92 Technology. https://doi.org/10.5593/sgem2018V/4.3/S05.013

  • Ruiz, S. O., de Lucio, O. G., Viggiano, A. M., Castellanos, N. A. P., Sil, J. L. R., Pingarrón, L. B., & Goguitchaichvili, A. (2023). Mayan fire: Calibration curve for the determination of heating temperatures of limestone, lime and related materials by FTIR measurements. Journal of Archaeological Science: Reports, 49, 103966. https://doi.org/10.1016/j.jasrep.2023.103966

    Article  Google Scholar 

  • Ruskilis, O. (1995). The Lime Industry in Malawi. In E. Agevi, O. Ruskilis, & T. Schilderman (Eds.), Lime and alternative binders in East Africa (pp. 104–107). Immediate technology publications in association with the overseas development administration.

    Google Scholar 

  • Russell, B. W., & Dahlin, B. H. (2008). Traditional burnt-lime production at Mayapán, Mexico. In Journal of Field Archaeology, 32(4), 407–423.

    Article  Google Scholar 

  • Sağin, E. U., Böke, H., Aras, N., & Yalçin, Ş. (2012). Determination of CaCO3 and SiO2 content in the binders of historic lime mortars. Materials and Structures/materiaux Et Constructions, 45(6), 841–849. https://doi.org/10.1617/s11527-011-9802-1

    Article  Google Scholar 

  • Scholle, P. A., & Ulmer-Scholle, D. S. (2003). A color guide to the petrography of carbonate rocks: Grains, textures, porosity, diagenesis. AAPG Memoir 77. American Association of Petroleum Geologists. https://doi.org/10.1306/M77973

  • Schreiner, T. (2004). Mesoamerican lime burning technology: A possible model for incipient lime industries of the early Near East. In C. Delage (Ed.), The Last Hunter-Gatherers in the Near East (pp. 249–262). Joseph Burridge Books.

  • Seligson, K., Negrón, T. G., Ciau, R. M., & Bey, G. J. (2017). Lime powder production in the Maya Puuc region (A.D. 600–950): An Experimental Pit-Kiln. Journal of Field Archaeology, 42(2), 129–141. https://doi.org/10.1080/00934690.2017.1286722

    Article  Google Scholar 

  • Seligson, K. E., Ortiz Ruiz, S., & Barba Pingarrón, L. (2019). Prehispanic Maya burnt lime industries: Previous studies and future directions. Ancient Mesoamerica, 30(2), 199–219. https://doi.org/10.1017/S0956536117000347

    Article  Google Scholar 

  • Seymour, L., Maragh, J., Sabatini, P., Di Tomasso, M., Weaver, J., & Masic, A. (2023). Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances, 9, eadd1602. https://doi.org/10.1126/sciadv.add1602

    Article  Google Scholar 

  • Singh, M., Vinodh Kumar, S., Waghmare, S. A., & Sabale, P. D. (2016). Aragonite- vaterite-calcite: Polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Construction and Building Materials, 112, 386–397. https://doi.org/10.1016/j.conbuiIdmat.2016.02.191

    Article  Google Scholar 

  • Sitzia, F., Peters, M. J., & Lisci, C. (2022). Climate change and its outcome on the archaeological areas and their building materials. The case study of Tharros (Italy). Digital Applications in Archaeology and Cultural Heritage, 25, e00226. https://doi.org/10.3390/cli11030050

    Article  Google Scholar 

  • Stoops, G., Canti, M., & Kapur, S. (2017). Calcareous mortars, plasters, and floors. In N. Cristiano & G. Stoops (Eds.), Archaeological Soil and Sediment Micromorphology (pp. 189–200). Wiley.

    Chapter  Google Scholar 

  • Theodoridou, M., Ioannou, I., & Philokyprou, M. (2013). New evidence of early use of artificial pozzolanic material in mortars. Journal of Archaeological Science, 40(8), 3263–3269. https://doi.org/10.1016/j.jas.2013.03.027

    Article  Google Scholar 

  • Thibodeau, M. L. (2016). Identifying 1 Mya fire in Wonderwerk Cave with micromorphology and fourier-transform infrared microspectroscopy. Unpublished MA Thesis. Simon Fraser University.

  • Toffolo, M. B. (2021). The significance of aragonite in the interpretation of the microscopic archaeological record. Geoarchaeology, 36(1), 149–169. https://doi.org/10.1002/gea.21816

    Article  Google Scholar 

  • Toffolo, M. B., & Boaretto, E. (2014). Nucleation of aragonite upon carbonation of calcium oxide and calcium hydroxide at ambient temperatures and pressures: A new indicator of fire-related human activities. Journal of Archaeological Science, 49(1), 237–248. https://doi.org/10.1016/j.jas.2014.05.020

    Article  Google Scholar 

  • Toffolo, M., Ullman, M., Caracuta, V., Weiner, S., Boaretto, E. (2017). A 10,400-year-old sunken lime kiln from the Early Pre-Pottery Neolithic B at the Nesher-Ramla quarry (el-Khirbe), Israel. Journal of Archaeological Science: Reports, 14. https://doi.org/10.1016/j.jasrep.2017.06.014

  • Toffolo, M. B., Regev, L., Dubernet, S., Lefrais, Y., & Boaretto, E. (2019a). FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis. Minerals, 9(2), 121. https://doi.org/10.3390/min9020121

  • Toffolo, M. B., Ricci, G., Caneve, L., & Kaplan-Ashiri, I. (2019b). Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-52587-7

  • Toffolo, M. B., Regev, L., Mintz, E., Kaplan-Ashiri, I., Berna, F., Dubernet, S., Yan, X., Regev, J., & Boaretto, E. (2020). Structural characterization and thermal decomposition of lime binders allow accurate radiocarbon age determinations of aerial lime plaster. Radiocarbon, 62(3), 633–655. https://doi.org/10.1017/RDC.2020.39

    Article  Google Scholar 

  • Toffolo, M. B., Pinkas, I., Gallo, A. Á., & Boaretto, E. (2023a). Crystallinity assessment of anthropogenic calcites using Raman micro-spectroscopy. Scientific Reports, 13, 12971. https://doi.org/10.1038/s41598-023-39842-8

  • Toffolo, M. B., Regev, L., Mintz, E., Dubernet, S., Berna, F., Chadwick, J., Maeir, A., & Boaretto, E. (2023b). Micro-contextual characterization of pyrogenic aragonite diagenesis in archaeological ash: Implications for radiocarbon dating of calcium carbonate in combustion features. Archaeological and Anthropological Sciences, 15, 177. https://doi.org/10.1007/s12520-023-01874-6

  • Válek, J., & Matas, T. (2012). Experimental study of hot mixed mortars in comparison with lime putty and hydrate mortars. In Válek et al. (Eds.), Historic Mortars (pp. 269–281). Springer.

  • Vandenabeele, P., Edwards, H. G. M., & Moens, L. (2007). A decade of Raman spectroscopy in art and archeology. In Chemical Reviews, 107(3), 675–686. https://doi.org/10.1021/cr068036i. American Chemical Society.

    Article  Google Scholar 

  • Villaseñor, I., & Price, C. A. (2008). Technology and decay of magnesian lime plasters: The sculptures of the funerary crypt of Palenque. Mexico. Journal of Archaeological Science, 35(4), 1030–1039. https://doi.org/10.1016/j.jas.2007.07.006

    Article  Google Scholar 

  • Wallace, P. T. (2017). Lime plaster use at late bronze age kalavasos-ayios dhimitrios (Cyprus): Evidence for application-specific recipes and the creation of social space. Unpublished MA Thesis. McMaster University.

  • Wernecke, D. C. (2008). A burning question: Maya lime technology and the Maya forest. Journal of Ethnobiology, 28(2), 200–210. https://doi.org/10.2993/0278-0771-28.2.200

    Article  Google Scholar 

  • Westlake, P., Siozos, P., Philippidis, A., Apostolaki, C., Derham, B., Terlixi, A., Perdikatsis, V., Jones, R., & Anglos, D. (2012). Studying pigments on painted plaster in Minoan, Roman and early Byzantine Crete. A multi-analytical technique approach. Analytical and Bioanalytical Chemistry, 402(4), 1413–1432. https://doi.org/10.1007/s00216-011-5281-z

  • Wright, V. P. (1992). A revised classification of limestones. Sedimentary Geology, 76(3–4), 177–185. https://doi.org/10.1016/0037-0738(92)90082-3

    Article  Google Scholar 

  • Yang, F., Zhang, B., Pan, C., & Zeng, Y. (2009). Traditional mortar represented by sticky rice lime mortar-One of the great inventions in ancient China. Science in China, Series e: Technological Sciences, 52(6), 1641–1647. https://doi.org/10.1007/s11431-008-0317-0

    Article  Google Scholar 

  • Zendri, E., Lucchini, V., Biscontin, G., & Morabito, Z. M. (2004). Interaction between clay and lime in “cocciopesto" mortars: A study by 29Si MAS spectroscopy. Applied Clay Science, 25(1–2), 1–7. https://doi.org/10.1016/S0169-1317(03)00155-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kevin Fisher and Cathy D’Andrea for providing comments, Joe Uziel for providing mortar samples from Wilson’s Arch, and Michael Toffolo for providing the micrographs presented in Figs. 2 and 3. We are also grateful for the suggestions of the anonymous reviewers, whose input improved this manuscript.

Funding

This work was supported by the Canada Foundation for Innovation John R. Evans Leaders Fund and the B.C. Knowledge Development Fund no. 40800.

Author information

Authors and Affiliations

Authors

Contributions

HH and FB both contributed to the manuscript outline and premise. HH wrote the majority of the manuscript text, with FB contributing some text in all sections, and both authors reviewed the manuscript. HH prepared Figs. 1 and 4; FB prepared Figs. 2 and 3. FB wrote all figure captions and the abstract text. HH compiled the supplementary table.

Corresponding author

Correspondence to Hannah M. Herrick.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrick, H.M., Berna, F. A Review of Methods to Analyze Archaeological Lime Production: Investigating Raw Materials Selection and Firing Conditions. J Archaeol Method Theory (2024). https://doi.org/10.1007/s10816-024-09652-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10816-024-09652-x

Keywords

Navigation