Skip to main content
Log in

Impact of human ovarian tissue manipulation on follicles: evidence of a potential first wave of follicle activation during fertility preservation procedures

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the impact of processing human ovarian tissue on follicle activation dynamics.

Methods

Fresh ovarian tissue was retrieved from 9 women undergoing laparoscopic surgery for benign conditions. Biopsies from each patient were divided into 3 fragments, the first of which was immediately fixed in the operating room (T0) and the second and third just after processing at 25 (T25) and (T90) 90 min. To evaluate follicle activation, markers of the PI3K and Hippo signaling pathways were immunolabeled at each time point, targeting phospho-Akt (p-Akt) by immunohistochemistry and yes-associated protein (YAP) cellular localization in the granulosa cell layer by immunofluorescence.

Results

Four hundred forty primordial follicles were evaluated for p-Akt and 420 for YAP. Significantly stronger p-Akt expression was observed at T25 (23.01 ± 13.45%; p=0.04) and T90 (38.99 ± 25.21%; p<0.001) than at T0 (2.72 ± 3.35%). A significant nucleus-to-cytoplasm shift in YAP was detected at T25 (1.21 ± 0.25; p=0.015 compared to T0 (0.95 ± 0.09), while T90 (1.10 ± 0.16) values were similar to T25.

Conclusion

Our data prove that ovarian tissue manipulation significantly impacts follicle dynamics by stimulating the PI3K and Hippo signaling pathways involved in primordial follicle activation. Further experimental evidence must nevertheless be gathered to understand and gain control of follicle activation mechanisms in non-physiological conditions (like ovarian tissue manipulation), in order to optimize fertility preservation and restoration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53(1):59–72. https://doi.org/10.1016/s0093-691x(99)00240-x.

    Article  CAS  PubMed  Google Scholar 

  2. Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64. https://doi.org/10.1210/er.2008-0048.

    Article  CAS  PubMed  Google Scholar 

  3. John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321(1):197–204. https://doi.org/10.1016/j.ydbio.2008.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3. https://doi.org/10.1126/science.1152257.

    Article  CAS  PubMed  Google Scholar 

  5. Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1–24. https://doi.org/10.1210/er.2014-1020.

    Article  CAS  PubMed  Google Scholar 

  6. Masciangelo R, Hossay C, Donnez J, Dolmans MM. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reprod Biomed Online. 2019;39(2):196–8. https://doi.org/10.1016/j.rbmo.2019.04.007.

    Article  CAS  PubMed  Google Scholar 

  7. Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod. 2018;33(9):1705–14. https://doi.org/10.1093/humrep/dey250.

    Article  CAS  PubMed  Google Scholar 

  8. Devos M, Grosbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod. 2020;102(3):717–29. https://doi.org/10.1093/biolre/ioz215.

    Article  PubMed  Google Scholar 

  9. Grosbois J, Devos M, Demeestere I. Implications of nonphysiological ovarian primordial follicle activation for fertility preservation. Endocr Rev. 2020;41(6):bnaa020. https://doi.org/10.1210/endrev/bnaa020.

    Article  PubMed  Google Scholar 

  10. Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A, Donnez J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 2007;134:253–62.

    Article  CAS  PubMed  Google Scholar 

  11. Telfer EE, Andersen CY. In vitro growth and maturation of primordial follicles and immature oocytes. Fertil Steril. 2021;115(5):1116–25. https://doi.org/10.1016/j.fertnstert.2021.03.004.

    Article  CAS  PubMed  Google Scholar 

  12. Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA. 2013;110:17474–9. https://doi.org/10.1073/pnas.1312830110.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30:608–15. https://doi.org/10.1093/humrep/deu353.

    Article  PubMed  Google Scholar 

  14. Smitz JE, Cortvrindt RG. The earliest stages of folliculogenesis in vitro. Reproduction. 2002;123(2):185–202. https://doi.org/10.1530/rep.0.1230185.

    Article  CAS  PubMed  Google Scholar 

  15. Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing. Cells. 2020;9(1):200. https://doi.org/10.3390/cells9010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dolmans MM, Cordier F, Amorim CA, Donnez J, Vander LC. In vitro activation prior to transplantation of human ovarian tissue: is it truly effective? Front Endocrinol (Lausanne). 2019;2(10):520. https://doi.org/10.3389/fendo.2019.00520.

    Article  Google Scholar 

  17. Hossay C, Tramacere F, Cacciottola L, Camboni A, Squifflet JL, Donnez J, Dolmans MM. Follicle outcomes in human ovarian tissue: effect of freezing, culture, and grafting. Fertil Steril. 2023;119(1):135–45. https://doi.org/10.1016/j.fertnstert.2022.09.360.

    Article  PubMed  Google Scholar 

  18. Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42. https://doi.org/10.1530/jrf.0.0810433.

    Article  CAS  PubMed  Google Scholar 

  19. Landini G, Martinelli G, Piccinini F. Colour deconvolution: stain unmixing in histological imaging. Bioinformatics. 2021;37(10):1485–7. https://doi.org/10.1093/bioinformatics/btaa847.

    Article  CAS  PubMed  Google Scholar 

  20. Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online. 2021;43(3):351–69. https://doi.org/10.1016/j.rbmo.2021.06.019.

    Article  PubMed  Google Scholar 

  21. Masciangelo R, Hossay C, Chiti MC, Manavella DD, Amorim CA, Donnez J, Dolmans MM. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J Assist Reprod Genet. 2020;37(1):101–8.

    Article  PubMed  Google Scholar 

  22. Cacciottola L, Courtoy GE, Nguyen TYT, Hossay C, Donnez J, Dolmans MM. Adipose tissue-derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation. J Assist Reprod Genet. 2021;38(1):151–61.

    Article  PubMed  Google Scholar 

  23. Devos M. Paula Diaz Vidal, Jason Bouziotis, Ellen Anckaert, Marie-Madeleine Dolmans, Isabelle Demeestere, Impact of first chemotherapy exposure on follicle activation and survival in human cryopreserved ovarian tissue. Human Reprod. 2023;38(3):408–20. https://doi.org/10.1093/humrep/dead013.

    Article  CAS  Google Scholar 

  24. Reuven N, Shanzer M, Shaul Y. Hippo pathway regulation by tyrosine kinases. Methods Mol Biol. 2019;1893:215–36. https://doi.org/10.1007/978-1-4939-8910-2_17.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: the therapeutic targets in cancer. Seminars in Cancer Biology. 2019; https://doi.org/10.1016/j.semcancer.2019.03.006.

  26. Shiratsuki S, Hara T, Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells. Mol Cell Endocrinol. 2016;5(437):75–85. https://doi.org/10.1016/j.mce.2016.08.010.

    Article  CAS  Google Scholar 

  27. Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet. 2011;28(1):3–6. https://doi.org/10.1007/s10815-010-9478-4.

    Article  PubMed  Google Scholar 

  28. Ding CC, Thong KJ, Krishna A, Telfer EE. Activin A inhibits activation of human primordial follicles in vitro. J Assist Reprod Genet. 2010;27(4):141–7. https://doi.org/10.1007/s10815-010-9395-6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144(8):3329–37. https://doi.org/10.1210/en.2002-0131.

    Article  CAS  PubMed  Google Scholar 

  30. Lunding SA, Andersen AN, Hardardottir L, Olesen HØ, Kristensen SG, Andersen CY, Pors SE. Hippo signaling, actin polymerization, and follicle activation in fragmented human ovarian cortex. Mol Reprod Dev. 2020;87(6):711–9. https://doi.org/10.1002/mrd.23353.

    Article  CAS  PubMed  Google Scholar 

  31. Kawamura K, Kawamura N, Hsueh AJ. Activation of dormant follicles: a new treatment for premature ovarian failure? Curr Opin Obstet Gynecol. 2016;28(3):217–22. https://doi.org/10.1097/GCO.0000000000000268.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Díaz-García C, Herraiz S, Pamplona L, Subirá J, Soriano MJ, Simon C, Seli E, Pellicer A. Follicular activation in women previously diagnosed with poor ovarian response: a randomized, controlled trial. Fertil Steril. 2022;117(4):747–55. https://doi.org/10.1016/j.fertnstert.2021.12.034.

    Article  PubMed  Google Scholar 

  33. Griesinger G, Fauser BCJM. Drug-free in-vitro activation of ovarian cortex; can it really activate the ‘ovarian gold reserve’? Reprod Biomed Online. 2020;40(2):187–9. https://doi.org/10.1016/j.rbmo.2020.01.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mira Hryniuk, B.A., for reviewing the English language of the manuscript, Maria Dolores Gonzalez and Olivier Van Kerk for their technical assistance, Francisco Vitale for his help with the statistical analysis, and the IREC-2IP imaging platform for their contribution to image processing.

Funding

This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (CDR J.0063.20, FNRS-PDR T.0064.22, grant 5/4/150/5 awarded to MM. Dolmans and Télévie grant 7.6511.20F awarded to C. Hossay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Madeleine Dolmans.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barretta, M., Cacciottola, L., Hossay, C. et al. Impact of human ovarian tissue manipulation on follicles: evidence of a potential first wave of follicle activation during fertility preservation procedures. J Assist Reprod Genet 40, 2769–2776 (2023). https://doi.org/10.1007/s10815-023-02930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02930-9

Keywords

Navigation