Skip to main content

Advertisement

Log in

Adipose tissue–derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether adipose tissue–derived stem cells (ASCs) protect the primordial follicle pool, not only by decreasing direct follicle loss but also by modulating follicle activation pathways.

Methods

Twenty nude mice were grafted with frozen-thawed human ovarian tissue from 5 patients. Ten mice underwent standard ovarian tissue transplantation (OT group), while the remaining ten were transplanted with ASCs and ovarian tissue (2-step/ASCs+OT group). Ovarian grafts were retrieved on days 3 (n = 5) and 10 (n = 5). Analyses included histology (follicle count and classification), immunohistochemistry (c-caspase-3 for apoptosis and LC3B for autophagy), and immunofluorescence (FOXO1 for PI3K/Akt activation and YAP for Hippo pathway disruption). Subcellular localization was determined in primordial follicles on high-resolution images using structured illumination microscopy.

Results

The ASCs+OT group showed significantly higher follicle density than the OT group (p = 0.01). Significantly increased follicle atresia (p < 0.001) and apoptosis (p = 0.001) were observed only in the OT group. In primordial follicles, there was a significant shift in FOXO1 to a cytoplasmic localization in the OT group on days 3 (p = 0.01) and 10 (p = 0.03), indicating follicle activation, while the ASCs+OT group and non-grafted controls maintained nuclear localization, indicating quiescence. Hippo pathway disruption was encountered in primordial follicles irrespective of transplantation, with nuclear YAP localized in their granulosa cells.

Conclusion

We demonstrate that ASCs exert positive effects on the ovarian reserve, not only by protecting primordial follicles from direct death but also by maintaining their quiescence through modulation of the PI3K/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dolmans MM, Lambertini M, Macklon KT, Almeida Santos T, Ruiz-Casado A, Borini A, et al. EUropean REcommendations for female FERtility preservation (EU-REFER): a joint collaboration between oncologists and fertility specialists. Crit Rev Oncol Hematol. 2019;138:233–40. https://doi.org/10.1016/j.critrevonc.2019.03.010.

    Article  PubMed  Google Scholar 

  2. Donnez J, Dolmans MM. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65. https://doi.org/10.1056/NEJMra1614676.

    Article  PubMed  Google Scholar 

  3. Dolmans MM, Falcone T, Patrizio P. Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertil Steril. 2020;114:279–80 in press.

    Article  PubMed  Google Scholar 

  4. Dolmans MM, Manavella DD. Recent advances in fertility preservation. J Obstet Gynaecol Res. 2019;45(2):266–79. https://doi.org/10.1111/jog.13818.

    Article  PubMed  Google Scholar 

  5. Van Eyck AS, Jordan BF, Gallez B, Heilier JF, Van Langendonckt A, Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 2009;92(1):374–81. https://doi.org/10.1016/j.fertnstert.2008.05.012.

    Article  CAS  PubMed  Google Scholar 

  6. Cacciottola L, Manavella DD, Amorim CA, Donnez J, Dolmans MM. In vivo characterization of metabolic activity and oxidative stress in grafted human ovarian tissue using microdialysis. Fertil Steril. 2018;110(3):534–544.e3. https://doi.org/10.1016/j.fertnstert.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  7. Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74(1):122–9. https://doi.org/10.1016/s0015-0282(00)00548-3.

    Article  CAS  PubMed  Google Scholar 

  8. Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019;25(6):673–93. https://doi.org/10.1093/humupd/dmz027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalich-Philosoph L, Roness H, Carmely A, Fisher-Bartal M, Ligumski H, Paglin S, et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185):185ra62. https://doi.org/10.1126/scitranslmed.3005402.

    Article  CAS  PubMed  Google Scholar 

  10. Luan Y, Edmonds ME, Woodruff TK, Kim SY. Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide. J Endocrinol. 2019;240(2):243–56. https://doi.org/10.1530/JOE-18-0370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang H, Liu K. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate activation in adulthood. Hum Reprod Update. 2015;21(6):779–86. https://doi.org/10.1093/humupd/dmv037.

    Article  CAS  PubMed  Google Scholar 

  12. Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9. https://doi.org/10.1073/pnas.1312830110.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod. 2018;33(9):1705–14. https://doi.org/10.1093/humrep/dey250.

    Article  CAS  PubMed  Google Scholar 

  14. Masciangelo R, Hossay C, Donnez J, Dolmans MM. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reprod BioMed Online. 2019;39(2):196–8. https://doi.org/10.1016/j.rbmo.2019.04.007.

    Article  CAS  PubMed  Google Scholar 

  15. Gavish Z, Spector I, Peer G, Schlatt S, Wistuba J, Roness H, et al. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. J Assist Reprod Genet. 2018;35(1):61–9. https://doi.org/10.1007/s10815-017-1079-z.

    Article  PubMed  Google Scholar 

  16. Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review). Mol Med Rep. 2018;18(4):3547–54. https://doi.org/10.3892/mmr.2018.9375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 2019;19(2):783–91. https://doi.org/10.3892/mmr.2018.9713.

    Article  CAS  PubMed  Google Scholar 

  18. Manavella DD, Cacciottola L, Desmet CM, Jordan BF, Donnez J, Amorim CA, et al. Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: a potential way to improve ovarian tissue transplantation. Hum Reprod. 2018;33(2):270–9. https://doi.org/10.1093/humrep/dex374.

    Article  CAS  PubMed  Google Scholar 

  19. Manavella DD, Cacciottola L, Pommé S, Desmet CM, Jordan BF, Donnez J, et al. Two-step transplantation with adipose tissue-derived stem cells increases follicle survival by enhancing vascularization in xenografted frozen-thawed human ovarian tissue. Hum Reprod. 2018;33(6):1107–16. https://doi.org/10.1093/humrep/dey080.

    Article  CAS  PubMed  Google Scholar 

  20. Manavella DD, Cacciottola L, Payen VL, Amorim CA, Donnez J, Dolmans MM. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Mol Hum Reprod. 2019;25(4):184–93. https://doi.org/10.1093/molehr/gaz008.

    Article  CAS  PubMed  Google Scholar 

  21. Dolmans MM, Jadoul P, Gilliaux S, Amorim CA, Luyckx V, Squifflet J, et al. A review of 15 years of ovarian tissue bank activities. J Assist Reprod Genet. 2013;30(3):305–14. https://doi.org/10.1007/s10815-013-9952-x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiti MC, Dolmans MM, Donnez J, Amorim CA. Fibrin in reproductive tissue engineering: a review on its application as a biomaterial for fertility preservation. Ann Biomed Eng. 2017;45(7):1650–63. https://doi.org/10.1007/s10439-017-1817-5.

    Article  CAS  PubMed  Google Scholar 

  23. Dath C, Van Eyck AS, Dolmans MM, Romeu L, Delle Vigne L, Donnez J, et al. Xenotransplantation of human ovarian tissue to nude mice: comparison between four grafting sites. Hum Reprod. 2010;25(7):1734–43. https://doi.org/10.1093/humrep/deq131.

    Article  CAS  PubMed  Google Scholar 

  24. Gougeon A, Chainy G. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42. https://doi.org/10.1530/jrf.0.0810433.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson RA, McLaughling M, Wallace WH, Albertini DF, Telfer EE. The immature human ovary shows loss of abnormal follicles and increasing follicle development competence through childhood and adolescence. Hum Reprod. 2014;29(1):97–106. https://doi.org/10.1093/humrep/det388.

    Article  CAS  PubMed  Google Scholar 

  26. Gougeon A, Busso D. Morphologic and functional determinants of primordial and primary follicles in the monkey ovary. Mol Cell Endocrinol. 2000;163(1–2):33–42. https://doi.org/10.1016/s0303-7207(00)00220-3.

    Article  CAS  PubMed  Google Scholar 

  27. Amorim CA, Donnez J, Dehoux JP, Scalercio SR, Squifflet J, Dolmans MM. Long-term follow-up of vitrified and autografted baboon (Papio anubis) ovarian tissue. Hum Reprod. 2019;34(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  28. Dolmans MM, Cacciottola L, Amorim CA, Manavella D. Translational research aiming to improve survival of ovarian tissue transplants using adipose tissue-derived stem cells. Acta Obstet Gynecol Scand. 2019;98(5):665–71. https://doi.org/10.1111/aogs.13610.

    Article  CAS  PubMed  Google Scholar 

  29. Cacciottola L, Nguyen TYT, Chiti MC, Camboni A, Amorim CA, Donnez J, et al. Long-term advantages of ovarian reserve maintenance and follicle development using adipose tissue-derived stem cells in ovarian tissue transplantation. J Clin Med. 2020;9(9):E2980. https://doi.org/10.3390/jcm9092980.

    Article  CAS  PubMed  Google Scholar 

  30. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008;136(6):703–15. https://doi.org/10.1530/REP-08-0290.

    Article  CAS  PubMed  Google Scholar 

  31. Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol. 1991;124:43–101. https://doi.org/10.1016/s0074-7696(08)61524-7.

    Article  CAS  PubMed  Google Scholar 

  32. Bonafede R, Brandi J, Manfredi M, Scambi I, Schiaffino L, Merigo F, et al. The anti-apoptotic effect of ASC-exosomes in an in vitro ALS model and their proteomic analysis. Cells. 2019;8(9):1087. https://doi.org/10.3390/cells8091087.

    Article  CAS  PubMed Central  Google Scholar 

  33. Shih YC, Lee PY, Cheng H, Tsai CH, Ma H, Tarng DC. Adipose-derived stem cells exhibit antioxidative and antiapoptotic properties to rescue ischemic acute kidney injury in rats. Plast Reconstr Surg. 2013;132(6):940e–51e. https://doi.org/10.1097/PRS.0b013e3182a806ce.

    Article  CAS  PubMed  Google Scholar 

  34. Ravanan P, Srikumar IF, Talwar P. Autophagy: the spotlight for cellular stress responses. Life Sci. 2017;188:53–67. https://doi.org/10.1016/j.lfs.2017.08.029.

    Article  CAS  PubMed  Google Scholar 

  35. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Oshumu Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15(3):1101–11. https://doi.org/10.1091/mbc.e03-09-0704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yadav AK, Yadav PK, Chaudhary GR, Tiwari M, Gupta A, Sharma A, et al. Autophagy in hypoxic ovary. Cell Mol Life Sci. 2019;76(17):3311–22. https://doi.org/10.1007/s00018-019-03122-4.

    Article  CAS  PubMed  Google Scholar 

  37. Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB 3rd. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction. 2011;141(6):759–65. https://doi.org/10.1530/REP-10-0489.

    Article  CAS  PubMed  Google Scholar 

  38. Song ZH, Yu HY, Wang P, Mao GK, Liu WX, Li MN, et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015;6(1):e1589. Published 2015 Jan 15. https://doi.org/10.1038/cddis.2014.559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delcour C, Amazit L, Patino LC, Magning F, Fagart J, Delemer B, et al. ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. 2019;21(4):930–8. https://doi.org/10.1038/s41436-018-0287-y.

    Article  CAS  PubMed  Google Scholar 

  40. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  41. Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res. 2014;114(3):549–64. https://doi.org/10.1161/CIRCRESAHA.114.302022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neufeld TP. TOR-dependent control in autophagy: biting the hand that feeds. Curr Opin Cell Biol. 2010;22(2):157–68. https://doi.org/10.1016/j.ceb.2009.11.005.

    Article  CAS  PubMed  Google Scholar 

  43. Masciangelo R, Hossay C, Chiti MC, Manavella DD, Amorim CA, Donnez J, et al. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J Assist Reprod Genet. 2020;37(1):101–8. https://doi.org/10.1007/s10815-019-01628-1.

    Article  PubMed  Google Scholar 

  44. Castrillon DH, Miao L, Kollipara R, Hroner JW, De Pinho RA. Suppression of ovarian follicle activation in mice by transcription factor Foxo3a. Science. 2003;301(5630):215–8. https://doi.org/10.1126/science.1086336.

    Article  CAS  PubMed  Google Scholar 

  45. Liu L, Rajareddy S, Reddy P, Du C, Jagarlamudi K, Shen Y, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development. 2007;134(1):199–209. https://doi.org/10.1242/dev.02667.

    Article  CAS  PubMed  Google Scholar 

  46. Ma X, Bai Y. IGF-1 activates the PI3K/Akt signaling pathway via upregulation of secretory clusterin. Mol Med Rep. 2012;6(6):1433–7. https://doi.org/10.3892/mmr.2012.1110.

    Article  CAS  PubMed  Google Scholar 

  47. Dudu V, Able RA Jr, Rotari V, Kong Q, Vazquez M. Role of epidermal growth factor-triggered PI3K/Akt signaling in the migration of medulloblastoma-derived cells. Cell Mol Bioeng. 2012;5(4):502–413. https://doi.org/10.1007/s12195-012-0253-8.

    Article  CAS  PubMed  Google Scholar 

  48. Dolmans MM, Cordier F, Amorim CA, Donnez J, Vander Linden C. In vitro activation prior to transplantation of human ovarian tissue: is it truly effective? Front Endocrinol (Lausanne). 2019;10:520. Published 2019 Aug 2. https://doi.org/10.3389/fendo.2019.00520.

    Article  Google Scholar 

  49. Devos M, Groisbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod. 2020;102(3):717–29. https://doi.org/10.1093/biolre/ioz215.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (F.R.S.-FNRS/FRIA FC29657 awarded to Luciana Cacciottola, FNRS-PDR Convention T.0077.14, the Excellence of Science FNRS–EOS number 30443682, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc and the Foundation Against Cancer, and donations from the Ferrero family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Madeleine Dolmans.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1

– Positive and negative immunostaining controls. Positive controls were conducted using spleen tissue for caspase-3 (A), adrenal gland tissue for LC3B (B), bowel tissue for FOXO1 (C) and breast cancer tissue for YAP (D). Negative controls were obtained using non-specific antibodies. Scale bar: 50 μm. (PNG 44.0 mb).

High resolution image (TIF 11.4 mb).

Supplementary Table 1

– Follicle count. Total follicle and per patient counts in non-grafted controls, the 2-step/ASCs+OT group and the OT group. (PNG 62885 kb).

High resolution image (TIF 25749 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciottola, L., Courtoy, G.E., Nguyen, T.Y.T. et al. Adipose tissue–derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation. J Assist Reprod Genet 38, 151–161 (2021). https://doi.org/10.1007/s10815-020-02005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-02005-z

Keywords

Navigation