Skip to main content
Log in

Evaluation of live birth rates and perinatal outcomes following two sequential vitrification/warming events at the zygote and blastocyst stages

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the outcome of sequential cryopreservation-thawing of zygotes followed by the cryopreservation-thawing of blastocysts in the course of an IVF treatment on live birth rate and neonatal parameters.

Methods

Single center, retrospective chart review for the time period of 2015–2020. Clinical and perinatal outcomes were compared between frozen embryo transfer cycles utilizing twice-cryopreserved (n = 182) vs. once-cryopreserved (n = 282) embryos. Univariate and multivariable analyses were used to adjust for relevant confounders.

Results

After adjustment for maternal age, gravidity, parity, body mass index (BMI), paternal age, fertilization method used, the number of oocytes retrieved in the fresh cycle, fertilization rate, and transfer medium, the transfer of twice-cryopreserved embryos resulted in a reduced probability of live birth (OR, 0.52; 95% CI 0.27–0.97; p=0.041) compared to once-cryopreserved embryos. No differences in the sex ratio, the mean gestational age, the mean length at birth, or the mean birth weight were found between the two groups.

Conclusion

The circumstantial use of sequential double vitrification-warming in course of treatment is associated with a reduced (but still reasonable) live birth rate compared to once-cryopreserved embryos. As the neonatal outcomes of twice-cryopreserved embryos are similar to once-cryopreserved embryos, this treatment option appears still valid as a rescue scenario in selected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

We are able to provide data upon request.

References

  1. Rienzy L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to procedure evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55. https://doi.org/10.1093/humupd/dmw038.

    Article  CAS  Google Scholar 

  2. Coetsier T, Dhont M. Avoiding multiple pregnancies in in-vitro fertilization: who’s afraid of single embryo transfer? Hum Reprod. 1998;13(10):2663–4. https://doi.org/10.1093/humrep/13.10.2663.

    Article  CAS  PubMed  Google Scholar 

  3. Courbiere B, Decanter C, Bringer-Deutsch S, Rives N, Mirallié S, Pech JC, De Ziegler D, Carré-Pigeon F, May-Panloup P, Sifer C, Amice V, Schweitzer T, Porcu-Buisson G. Poirot C; French Study Group for Ovarian and Testicular Cryopreservation (GRECOT). Emergency IVF for embryo freezing to preserve female fertility: a French multicentre cohort study. Hum Reprod. 2013;28(9):2381–8. https://doi.org/10.1093/humrep/det268.

    Article  CAS  PubMed  Google Scholar 

  4. Ferraretti AP, Gianaroli L, Magli C, Fortini D, Selman HA, Feliciani E. Elective cryopreservation of all pronucleate embryos in women at risk of ovarian hyperstimulation syndrome: efficiency and safety. Hum Reprod. 1999;14(6):1457–60. https://doi.org/10.1093/humrep/14.6.1457.

    Article  CAS  PubMed  Google Scholar 

  5. Griesinger G, von Otte S, Schroer A, Ludwig AK, Diedrich K, Al-Hasani S, Schultze-Mosgau A. Elective cryopreservation of all pronuclear oocytes after GnRH agonist triggering of final oocyte maturation in patients at risk of developing OHSS: a prospective, observational proof-of-concept study. Hum Reprod. 2007 May;22(5):1348–52. https://doi.org/10.1093/humrep/dem006.

    Article  CAS  PubMed  Google Scholar 

  6. Griesinger G, Mannaerts B, Andersen CY, Witjes H, Kolibianakis EM, Gordon K. Progesterone elevation does not compromise pregnancy rates in high responders: a pooled analysis of in vitro fertilization patients treated with recombinant follicle-stimulating hormone/gonadotropin-releasing hormone antagonist in six trials. Fertil Steril. 2013;100(6):1622–8.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8. https://doi.org/10.1016/j.fertnstert.2011.05.050.

    Article  PubMed  Google Scholar 

  8. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011;96(2):516–8. https://doi.org/10.1016/j.fertnstert.2011.02.059.

    Article  PubMed  Google Scholar 

  9. Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott RT Jr. Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients. Fertil Steril. 2011;96(3):638–40. https://doi.org/10.1016/j.fertnstert.2011.06.049.

    Article  PubMed  Google Scholar 

  10. Bosdou JK, Venetis CA, Tarlatzis BC, Grimbizis GF, Kolibianakis EM. Higher probability of live-birth in high, but not normal, responders after first frozen-embryo transfer in a freeze-only cycle strategy compared to fresh-embryo transfer: a meta-analysis. Hum Reprod. 2019;34(3):491–505. https://doi.org/10.1093/humrep/dey388.

    Article  CAS  PubMed  Google Scholar 

  11. Shi Y, Sun Y, Hao C, Zhang H, Wei D, Zhang Y, Zhu Y, Deng X, Qi X, Li H, et al. Transfer of fresh versus frozen embryos in ovulatory women. N Engl J Med. 2018;378(2):126–36. https://doi.org/10.1056/nejmoa1705334.

    Article  PubMed  Google Scholar 

  12. Griesinger G, Schultz L, Bauer T, Broessner A, Frambach T, Kissler S. Ovarian hyperstimulation syndrome prevention by gonadotropin-releasing hormone agonist triggering of final oocyte maturation in a gonadotropin-releasing hormone antagonist protocol in combination with a “freeze-all” strategy: a prospective multicentric study. Fertil Steril. 2011;95(6):2029–33. https://doi.org/10.1016/j.fertnstert.2011.01.163.

    Article  CAS  PubMed  Google Scholar 

  13. Ziller V. Interpretation of the Embryo Protection Act: the “German compromise”. Die Gynäkologie. 2017;50(2):1–5. https://doi.org/10.1007/s00129-017-4079-2.

    Article  Google Scholar 

  14. Murakami M, Egashira A, Murakami K, Araki Y, Kuramoto T. Perinatal outcome of twice-frozen-thawed embryo transfers: a clinical follow-up study. Fertil Steril. 2011;95(8):2648–50. https://doi.org/10.1016/j.fertnstert.2010.12.038.

    Article  PubMed  Google Scholar 

  15. Kumasako Y, Otsu E, Utsunomiya T, Araki Y. The efficacy of the transfer of twice frozen-thawed embryos with the vitrification method. Fertil Steril. 2009;91(2):383–6. https://doi.org/10.1016/j.fertnstert.2007.11.079.

    Article  PubMed  Google Scholar 

  16. Farhi J, Elizur S, Yonish M, Seidman DS, Shulman A, Schiff E, Orvieto R. Results of double freezing approach in the management of surplus embryos in IVF. Reprod Biomed Online. 2019;38(4):517–9. https://doi.org/10.1016/j.rbmo.2018.11.010.

    Article  PubMed  Google Scholar 

  17. Koch J, Costello MF, Chapman MG, Kilani S. Twice-frozen embryos are no detrimental to pregnancy success: a retrospective comparative study. Fertil Steril. 2011;96(1):58–62. https://doi.org/10.1016/j.fertnstert.2011.04.034.

    Article  PubMed  Google Scholar 

  18. Zheng X, Chen Y, Yan J, Wu Y, Zhuang X, Lin S, Zhu Y, Qiao J, Liu P. Effect of repeated cryopreservation on human embryo developmental potential. Reprod Biomed Online. 2017;35(6):627–32. https://doi.org/10.1016/j.rbmo.2017.08.016.

    Article  PubMed  Google Scholar 

  19. Hallamaa M, Seikkula J, Willman S, Ollila H, Jokimaa V. Pregnancy potential and perinatal outcomes of embryos cryopreserved twice: a case-control study. Reprod Biomed Online. 2021;43(4):607–13. https://doi.org/10.1016/j.rbmo.2021.06.028.

    Article  PubMed  Google Scholar 

  20. Devroey P, Aboulghar M, Garcia-Velasco J, Griesinger G, Humaidan P, Kolibianakis E, Ledger W, Tomás C, Fauser BC. Improving the patient’s experience of IVF/ICSI: a proposal for an ovarian stimulation protocol with GnRH antagonist co-treatment. Hum Reprod. 2009;24(4):764–74. https://doi.org/10.1093/humrep/den468.

    Article  CAS  PubMed  Google Scholar 

  21. Youssef MA, Van der Veen F, Al-Inany HG, Griesinger G, Mochtar MH, Aboulfoutouh I, Khattab SM, van Wely M. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist assisted reproductive technology cycles. Cochrane Database Syst Rev. 2011;19(1):CD008046. https://doi.org/10.1002/14651858.cd008046.pub3.

    Article  Google Scholar 

  22. Neumann K, Masuch A, Vonthein R, Depenbusch M, Schultze-Mosgau A, Eggersmann TK, Griesinger G. Dydrogesterone and 20α-dihydrodydrogesterone plasma levels on day of embryo transfer and clinical outcome in an anovulatory programmed frozen-thawed embryo transfer cycle: a prospective cohort study. Hum Reprod. 2022;37(6):1183–93. https://doi.org/10.1093/humrep/deac045.

    Article  CAS  PubMed  Google Scholar 

  23. Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999 Jun;11(3):307–11. https://doi.org/10.1097/00001703-199906000-00013.

    Article  CAS  PubMed  Google Scholar 

  24. Pierson HE, Invik J, Meriano J, Pierson RA. A novel system for rapid conversion of Gardner embryo grades to linear scale numeric variables. Reprod Biomed Online. 2023;46(5):808–18. https://doi.org/10.1016/j.rbmo.2023.01.008.

    Article  PubMed  Google Scholar 

  25. Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update. 2015;21(2):209–27. https://doi.org/10.1093/humupd/dmu063.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao XM, Fu XW, Hou YP, Yan CL, Suo L, Wang YP, Zhu HB, Dinnyés A, Zhu SE. Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev. 2009;76(11):1056–63. https://doi.org/10.1002/mrd.21064.

    Article  CAS  PubMed  Google Scholar 

  27. Chen YN, Dai JJ, Wu CF, Zhang SS, Sun LW, Zhang DF. Apoptosis and developmental capacity of vitrified parthenogenetic pig blastocysts. Anim Reprod Sci. 2018;198:137–44. https://doi.org/10.1016/j.anireprosci.2018.09.012.

    Article  PubMed  Google Scholar 

  28. Oikonomou Z, Chatzimeletiou K, Sioga A, Oikonomou L, Tarlatzis BC, Kolibianakis E. Effects of vitrification on blastomere viability and cytoskeletal integrity in mouse embryos. Zygote. 2017;25(1):75–84. https://doi.org/10.1017/s0967199416000368.

    Article  CAS  PubMed  Google Scholar 

  29. Kader A, Agarwal A, Abdelrazik H, Sharma RK, Ahmady A, Falcone T. Evaluation of post-thaw DNA integrity of mouse blastocysts after ultrarapid and slow freezing. Fertil Steril. 2009;91(5 Suppl):2087–94. https://doi.org/10.1016/j.fertnstert.2008.04.049.

    Article  PubMed  Google Scholar 

  30. Chen H, Zhang L, Meng L, Liang L, Zhang C. Advantages of vitrification preservation in assisted reproduction and potential influences on imprinted genes. Clin Epigenetics. 2022;14(1):141. https://doi.org/10.1186/s13148-022-01355-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smits MAJ, van Maarle M, Hamer G, Mastenbroek S, Goddijn M, van Wely M. Cytogenetic testing of pregnancy loss tissue: a meta-analysis. Reprod Biomed Online. 2020;40(6):867–79. https://doi.org/10.1016/j.rbmo.2020.02.001.

    Article  CAS  PubMed  Google Scholar 

  32. Forman EJ, Li X, Ferry KM, Scott K, Treff NR, Scott RT Jr. Oocyte vitrification does not increase the risk of embryonic aneuploidy or diminish the implantation potential of blastocysts created after intracytoplasmic sperm injection: a novel, paired randomized controlled trial using DNA fingerprinting. Fertil Steril. 2012;98(3):644–9. https://doi.org/10.1016/j.fertnstert.2012.04.028.

    Article  CAS  PubMed  Google Scholar 

  33. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized clinical trial. Fertil Steril. 2015;104(5):1138–44. https://doi.org/10.1016/j.fertnstert.2015.07.1141.

    Article  PubMed  Google Scholar 

  34. Bongso A, Chye NS, Sathananthan H, Mui-Nee L, Mok H, Wong PC, Ratnam S. Chromosome analysis of two-cell mouse embryos frozen by slow and ultrarapid methods using two different cryoprotectants. Fertil Steril. 1988;49(5):908–12. https://doi.org/10.1016/s0015-0282(16)59905-1.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Mao R, Wang M, Long R, Jin L, Zhu L. The effect of recryopreservation on the embryo viability and outcomes of in vitro fertilization: a systematic review and meta-analysis. Fertil Steril. 2023; https://doi.org/10.1016/j.fertnstert.2023.03.001.

Download references

Funding

This study was funded by the University Hospital of Schleswig-Holstein, Luebeck, Germany.

Author information

Authors and Affiliations

Authors

Contributions

L.N. conceived and designed the analyses, performed the analysis, and wrote the manuscript. B. S. contributed in collecting the data and writing the manuscript. A.S-M, M.D, T.K.E, and R.A.F.H. contributed in editing the manuscript. G.G. was involved in designing the study and analyses and has also participated in writing the manuscript.

Corresponding author

Correspondence to Laszlo Nanassy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanassy, L., Schoepper, B., Schultze-Mosgau, A. et al. Evaluation of live birth rates and perinatal outcomes following two sequential vitrification/warming events at the zygote and blastocyst stages. J Assist Reprod Genet 40, 2357–2365 (2023). https://doi.org/10.1007/s10815-023-02909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02909-6

Keywords

Navigation