Skip to main content

Advertisement

Log in

Identification of potential diagnostic biomarkers and therapeutic targets for endometriosis based on bioinformatics and machine learning analysis

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Endometriosis (EMs) is a major gynecological condition in women. Due to the absence of definitive symptoms, its early detection is very challenging; thus, it is crucial to find biomarkers to ease its diagnosis and therapy. Here, we aimed to identify potential diagnostic and therapeutic targets for EMs by constructing a regulatory network and using machine learning approaches.

Methods

Three Gene Expression Omnibus (GEO) datasets were merged, and differentially expressed genes (DEGS) were identified after preprocessing steps. Using the DEGs, a transcription factor (TF)-mRNA-miRNA regulatory network was constructed, and hub genes were detected based on four different algorithms in CytoHubba. The hub genes were used to build a GaussianNB diagnostic model and also in docking analysis that were performed using Discovery Studio and AutoDock Vina software.

Results

A total of 119 DEGs were identified between EMs and non-EMs samples. A regulatory network consisting of 52 mRNAs, 249 miRNAs, and 37 TFs was then constructed. The diagnostic model was introduced using the hub genes selected from the network (GATA6, HMOX1, HS3ST1, NFASC, and PTGIS) that its area under the curve (AUC) was 0.98 and 0.92 in the training and validation cohorts, respectively. Based on docking analysis, two chemical compounds, rofecoxib and retinoic acid, had potential therapeutic effects on EMs.

Conclusion

In conclusion, this study identified potential diagnostic and therapeutic targets for EMs which demand more experimental confirmations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The GEO datasets used in this study are available at GEO (https://www.ncbi.nlm.nih.gov/geo/) database. The list of the datasets is provided in Table 1.

References

  1. Dai F-F, Bao A-Y, Luo B, Zeng Z-H, Pu X-L, Wang Y-Q, et al. Identification of differentially expressed genes and signaling pathways involved in endometriosis by integrated bioinformatics analysis. Exp Ther Med. 2019;19:264 (Spandidos Publications).

    PubMed  PubMed Central  Google Scholar 

  2. Zhang Z, Ruan L, Lu M, Yao X. Analysis of key candidate genes and pathways of endometriosis pathophysiology by a genomics-bioinformatics approach. Gynecol Endocrinol. 2019;35:576–81.

    Article  CAS  PubMed  Google Scholar 

  3. Ye Z, Meng Q, Zhang W, He J, Zhao H, Yu C, et al. Exploration of the shared gene and molecular mechanisms between endometriosis and recurrent pregnancy loss. Front Vet Sci. 2022;9:867405.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mathew AG. A case exemplifying Sampson’s theory of the aetiology of endometriosis. Aust N Z J Obstet Gynaecol. 1963;3:159–61.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuura K, Ohtake H, Katabuchi H, Okamura H. Coelomic metaplasia theory of endometriosis: evidence from in vivo studies and an in vitro experimental model. Gynecol Obstet Invest. 1999;47(Suppl 1):18–22.

    Article  PubMed  Google Scholar 

  6. Ugur M, Turan C, Mungan T, Kuscu E, Senoz S, Agis HT, et al. Endometriosis in association with Mullerian anomalies. Gynecol Obstet Invest. 1995;40:261–4.

    Article  CAS  PubMed  Google Scholar 

  7. Maruyama T. A revised stem cell theory for the pathogenesis of endometriosis. J Pers Med. 2022;12(2):216 (Multidisciplinary Digital Publishing Institute (MDPI)).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bai J, Wang B, Wang T, Ren W. Identification of functional lncRNAs associated with ovarian endometriosis based on a ceRNA network. Front Genet. 2021;12:534054 (Frontiers Media S.A.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu J, Fang X, Xia X. Identification of key genes and pathways associated with endometriosis by weighted gene co-expression network analysis. Int J Med Sci. 2021;18:3425–36 (Ivyspring International Publisher).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui D, Liu Y, Ma J, Lin K, Xu K, Lin J. Identification of key genes and pathways in endometriosis by integrated expression profiles analysis. PeerJ. 2020;8:e10171 (PeerJ Inc.).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Akter S, Xu D, Nagel SC, Bromfield JJ, Pelch K, Wilshire GB, et al. Machine learning classifiers for endometriosis using transcriptomics and methylomics data. Front Genet. 2019;10:766 (Frontiers Media S.A.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akter S, Xu D, Nagel SC, Bromfield JJ, Pelch KE, Wilshire GB, et al. GenomeForest: an ensemble machine learning classifier for endometriosis. AMIA Jt Summits Transl Sci. 2020;2020:33–42 (American Medical Informatics Association).

    Google Scholar 

  13. Miao C, Chen Y, Fang X, Zhao Y, Wang R, Zhang Q. Identification of the shared gene signatures and pathways between polycystic ovary syndrome and endometrial cancer: an omics data based combined approach. PLoS One. 2022;17:e0271380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang HM, Kuang S, Xiong X, Gao T, Liu C, Guo AY. Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases. Brief Bioinform. 2013;16:45–58 (Oxford Academic).

    Article  PubMed  Google Scholar 

  15. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–15 (Oxford Academic).

    Article  CAS  PubMed  Google Scholar 

  16. Brettschneider J, Bolstad B, Collin F, Speed T. Quality assessment for short oligonucleotide microarray data. Technometrics. 2008;50:241–64 (Taylor & Francis).

    Article  Google Scholar 

  17. Heber S, Sick B. Quality assessment of Affymetrix GeneChip data. OMICS. 2006;10:358–68.

    Article  CAS  PubMed  Google Scholar 

  18. Bolstad BM, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA, et al. Quality assessment of Affymetrix GeneChip data. Bioinforma Comput Biol Solut Using R Bioconductor. New York, NY: Springer; 2005. p. 33–47.

    Google Scholar 

  19. Harr B, Schlötterer C. Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons. Nucleic Acids Res. 2006;34:1–8 (Oxford Academic).

    Article  Google Scholar 

  20. Bioconductor - gcrma [Internet]. Available from: https://www.bioconductor.org/packages/release/bioc/html/gcrma.html. Accessed 21 Feb 2023

  21. Ai D, Wang Y, Li X, Pan H. Colorectal cancer prediction based on weighted gene co-expression network analysis and variational auto-encoder. Biomolecules. 2020;10:1–11 (Multidisciplinary Digital Publishing Institute).

    Article  Google Scholar 

  22. Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics. 2010;10:278–91 (J Nature Publishing Group).

    Article  CAS  Google Scholar 

  23. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27 (Oxford Academic).

    Article  PubMed  Google Scholar 

  24. Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004;20:105–14 (Oxford Academic).

    Article  CAS  PubMed  Google Scholar 

  25. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:47 (Oxford Academic).

    Article  Google Scholar 

  27. Dweep H, Gretz N. MiRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697–697 (Nature Publishing Group).

    Article  CAS  PubMed  Google Scholar 

  28. Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, et al. MiRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022;50:D222–30 (Oxford Academic).

    Article  CAS  PubMed  Google Scholar 

  29. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–6 (Oxford Academic).

    Article  CAS  PubMed  Google Scholar 

  30. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:S11 (BioMed Central).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pedregosa F, Michel V, Grisel O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30 (Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot).

    Google Scholar 

  32. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5 (IEEE Computer Society).

    Article  Google Scholar 

  33. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures database for gene set analysis. Bioinformatics. 2015;31:3069–71 (Oxford University Press).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26 (Elsevier).

    Article  CAS  PubMed  Google Scholar 

  35. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43:3867–77 (American Chemical Society).

    Article  CAS  PubMed  Google Scholar 

  36. Pathania S, Singh PK. Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols? Expert Opin Drug Metab Toxicol. 2021;17(4):351–4 (Taylor & Francis).

    Article  CAS  PubMed  Google Scholar 

  37. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23 (American Chemical Society).

    Article  CAS  PubMed  Google Scholar 

  38. Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I, et al. RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci. 2020;29(1):52–65 (John Wiley & Sons, Ltd).

    Article  CAS  PubMed  Google Scholar 

  39. Studio D. Dassault systemes BIOVIA, Discovery Studio modelling environment, Release 4.5. Accelrys Softw Inc. 2015;98–104.

  40. Lawal B, Lee CY, Mokgautsi N, Sumitra MR, Khedkar H, Wu ATH, et al. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 are druggable candidates for N-(2,4-difluorophenyl)-2′,4′-difluoro-4-hydroxybiphenyl-3-carboxamide (NSC765598), with consequent anticancer implications. Front Oncol. 2021;11:656738 (Frontiers Media S.A.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu ATH, Lawal B, Wei L, Wen YT, Tzeng DTW, Lo WC. Multiomics identification of potential targets for Alzheimer disease and antrocin as a therapeutic candidate. Pharmaceutics. 2021;13:1555 (Multidisciplinary Digital Publishing Institute).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lawal B, Liu YL, Mokgautsi N, Khedkar H, Sumitra MR, Wu ATH, et al. Pharmacoinformatics and preclinical studies of nsc765690 and nsc765599, potential stat3/cdk2/4/6 inhibitors with antitumor activities against nci60 human tumor cell lines. Biomedicines. 2021;9:1–22 (Multidisciplinary Digital Publishing Institute).

    Article  Google Scholar 

  43. Lawal B, Kuo YC, Tang SL, Liu FC, Wu ATH, Lin HY, et al. Transcriptomic-based identification of the immuno-oncogenic signature of cholangiocarcinoma for hlc-018 multi-target therapy exploration. Cells. 2021;10:2873 (MDPI).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JC, Wu ATH, Chen JH, Huang WY, Lawal B, Mokgautsi N, et al. Hnc0014, a multi-targeted small-molecule, inhibits head and neck squamous cell carcinoma by suppressing c-met/stat3/cd44/pd-l1 oncoimmune signature and eliciting antitumor immune responses. Cancers (Basel). 2020;12:1–18 (Multidisciplinary Digital Publishing Institute).

    Article  Google Scholar 

  45. Sivajohan B, Elgendi M, Menon C, Allaire C, Yong P, Bedaiwy MA. Clinical use of artificial intelligence in endometriosis: a scoping review. NJP Digit Med. 2022;5(1):109.

    Article  Google Scholar 

  46. Kimber-Trojnar Ż, Pilszyk A, Niebrzydowska M, Pilszyk Z, Ruszała M, Leszczyńska-Gorzelak B. The potential of non-invasive biomarkers for early diagnosis of asymptomatic patients with endometriosis. J Clin Med. 2021;10(13):2762 (Multidisciplinary Digital Publishing Institute).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kvaskoff M, Mahamat-Sale Y, Farland LV, Shigesi N, Terry KL, Harris HR, et al. Endometriosis and cancer: a systematic review and meta-analysis. Hum Reprod Update. 2021;27(2):393–420 (Oxford Academic).

    Article  CAS  PubMed  Google Scholar 

  48. Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, et al. Association of endometriosis with cardiovascular disease: genetic aspects (review). Int J Mol Med. 2023;51(3):1–16 (Spandidos Publications).

    Article  Google Scholar 

  49. Mori T, Ito F, Koshiba A, Kataoka H, Takaoka O, Okimura H, et al. Local estrogen formation and its regulation in endometriosis. Reprod Med Biol. 2019;18(4):305–11 (John Wiley & Sons, Ltd).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tian Z, Chang XH, Zhao Y, Zhu HL. Current biomarkers for the detection of endometriosis. Chin Med J (Engl). 2020;133(19):2346–52 (Wolters Kluwer Health).

    Article  CAS  PubMed  Google Scholar 

  51. Li L, Sun B, Sun Y. Identification of functional TF-miRNA-hub gene regulatory network associated with ovarian endometriosis. Front Genet. 2022;13:998417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rekker K, Saare M, Roost AM, Kaart T, Sõritsa D, Karro H, et al. Circulating miR-200-family micro-RNAs have altered plasma levels in patients with endometriosis and vary with blood collection time. Fertil Steril. 2015;104:938-946.e2.

    Article  CAS  PubMed  Google Scholar 

  53. Kim BG, Yoo JY, Kim TH, Shin JH, Langenheim JF, Ferguson SD, et al. Aberrant activation of signal transducer and activator of transcription-3 (STAT3) signaling in endometriosis. Hum Reprod. 2015;30:1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bianco B, Lerner TG, Trevisan CM, Cavalcanti V, Christofolini DM, Barbosa CP. The nuclear factor-kB functional promoter polymorphism is associated with endometriosis and infertility. Hum Immunol. 2012;73:1190–3.

    Article  CAS  PubMed  Google Scholar 

  55. Song Y, Xiao L, Fu J, Huang W, Wang Q, Zhang X, et al. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol. 2014;12:1–7.

    Article  Google Scholar 

  56. Bernardi LA, Dyson MT, Tokunaga H, Sison C, Oral M, Robins JC, et al. The essential role of GATA6 in the activation of estrogen synthesis in endometriosis. Reprod Sci. 2019;26:60–9 (Society for Reproductive Investigation).

    Article  CAS  PubMed  Google Scholar 

  57. Izawa M, Taniguchi F, Harada T. GATA6 expression promoted by an active enhancer may become a molecular marker in endometriosis lesions. Am J Reprod Immunol. 2019;81:e13078 (John Wiley & Sons, Ltd).

    Article  CAS  PubMed  Google Scholar 

  58. Milewski Ł, Ścieżyńska A, Ponińska J, Soszyńska M, Barcz E, Roszkowski PI, et al. Endometriosis is associated with functional polymorphism in the promoter of heme oxygenase 1 (Hmox1) gene. Cells. 2021;10:1–11 (Multidisciplinary Digital Publishing Institute (MDPI)).

    Article  Google Scholar 

  59. Chen P, Yao M, Fang T, Ye C, Du Y, Jin Y, et al. Identification of NFASC and CHL1 as two novel hub genes in endometriosis using integrated bioinformatic analysis and experimental verification. Pharmgenomics Pers Med. 2022;15:377–92.

    PubMed  PubMed Central  Google Scholar 

  60. Bae SJ, Jo Y, Cho MK, Jin JS, Kim JY, Shim J, et al. Identification and analysis of novel endometriosis biomarkers via integrative bioinformatics. Front Endocrinol (Lausanne). 2022;13:942368.

    Article  PubMed  Google Scholar 

  61. Dogan E, Saygili U, Posaci C, Tuna B, Caliskan S, Altunyurt S, et al. Regression of endometrial explants in rats treated with the cyclooxygenase-2 inhibitor rofecoxib. Fertil Steril. 2004;82:1115–20.

    Article  CAS  PubMed  Google Scholar 

  62. Kilico I, Kokcu A, Kefeli M, Kandemir B. Regression of experimentally induced endometriosis with a new selective cyclooxygenase-2 enzyme inhibitor. Gynecol Obstet. 2014;77:35–9 (Invest Karger Publishers).

    CAS  Google Scholar 

  63. Wang DB, Chen Q, Zhang C, Ren F, Li T. DNA hypomethylation of the COX-2 gene promoter is associated with up-regulation of its mRNA expression in eutopic endometrium of endometriosis. Eur J Med Res. 2012;17:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dolmans MM, Donnez J. Emerging drug targets for endometriosis. Biomolecules. 2022;12(11):1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamagata Y, Takaki E, Shinagawa M, Okada M, Jozaki K, Lee L, et al. Retinoic acid has the potential to suppress endometriosis development. J Ovarian Res. 2015;8(1):1–7 (BioMed Central).

    Article  CAS  Google Scholar 

  66. Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update. 2019;25:473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pavone ME, Dyson M, Reirstad S, Pearson E, Ishikawa H, Cheng YH, et al. Endometriosis expresses a molecular pattern consistent with decreased retinoid uptake, metabolism and action. Hum Reprod. 2011;26(8):2157–64 (Oxford University Press).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maryam Hosseini: methodology, software, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization Behnaz Hammami: methodology, formal analysis, writing—original draft, writing—review and editing. Mohammad Kazemi: conceptualization, methodology, investigation, resources, writing—original draft, writing—review and editing, validation, project administration.

Corresponding author

Correspondence to Mohammad Kazemi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Hammami, B. & Kazemi, M. Identification of potential diagnostic biomarkers and therapeutic targets for endometriosis based on bioinformatics and machine learning analysis. J Assist Reprod Genet 40, 2439–2451 (2023). https://doi.org/10.1007/s10815-023-02903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02903-y

Keywords

Navigation