Skip to main content
Log in

ART outcomes in lean compared to obese phenotypes of polycystic ovarian syndrome

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Research question

To investigate differences in reproductive outcomes among IVF patients with lean compared to obese polycystic ovarian syndrome (PCOS) phenotypes.

Design

A retrospective cohort study of patients with PCOS who underwent IVF in a single, academically affiliated infertility center in the USA between December 2014 and July 2020. The diagnosis of PCOS was assigned based on Rotterdam criteria. Patients were designated as lean (< 25) or overweight/obese (≥ 25) PCOS phenotype based on BMI (kg/m2) at cycle start. Baseline clinical and endocrinologic laboratory panel, cycle characteristics, and reproductive outcomes were analyzed. The cumulative live birth rate included up to 6 consecutives cycles. A Cox proportional hazards model and Kaplan–Meier curve for estimating live birth rates were used to compare the two phenotypes.

Results

A total of 1395 patients who underwent 2348 IVF cycles were included. The mean (SD) BMI was 22.7 (2.4) in the lean and 33.8 (6.0) in the obese group (p < 0.001). A number of endocrinological parameters were similar between lean and obese phenotypes: total testosterone 30.8 ng/dl (19.5) vs 34.1 (21.9), p > 0.02 and pre-cycle hemoglobin A1C 5.33% (0.38) vs 5.51% (0.51) p > 0.001, respectively. The CLBR was higher in those with a lean PCOS phenotype: 61.7% (373/604) vs 54.0% (764/1414) respectively. Miscarriage rates were significantly higher for O-PCOS patients (19.7% (214/1084) vs 14.5% (82/563) p < 0.001) and the rate of aneuploids was similar (43.5%, 43.8%, p = 0.8). A Kaplan–Meier curve estimating the proportion of patients with a live birth was higher in the lean group (log-rank test p = 0.013). After adjusting for potential confounders, the lean phenotype was associated with an increased hazard ratio for live birth: HR = 1.38 p < 0.001.

Conclusions

Lean PCOS phenotype is associated with a significantly higher CLBR compared to their obese counterparts. Miscarriage rates were significantly higher among obese patients, despite comparable pre-cycle HBA1C and similar aneuploidy rates in patients who underwent PGT-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Supplemental data included.

Code availability

Not applicable.

References

  1. Argenta P, et al. Hormone receptor expression patterns in the endometrium of asymptomatic morbidly obese women before and after bariatric surgery. Gynecol Oncol. 2014;133(1):78–82.

    Article  CAS  PubMed  Google Scholar 

  2. ASRM. Medicine. Obesity and reproduction: a committee opinion. Fertil Steril. 2021;116(5):1266–85.

    Article  Google Scholar 

  3. Bell GA, et al. Maternal polycystic ovarian syndrome and early offspring development. Hum Reprod. 2018;33(7):1307–15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellver J, et al. Endometrial gene expression in the window of implantation is altered in obese women especially in association with polycystic ovary syndrome. Fertil Steril. 2011;95(7):2335–41 (2341.e2331-2338).

    Article  CAS  PubMed  Google Scholar 

  5. Bergin K, et al. The use of propensity score matching to assess the benefit of the endometrial receptivity analysis in frozen embryo transfers. Fertil Steril. 2021;116(2):396–403.

    Article  PubMed  Google Scholar 

  6. Bozdag G, et al. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2016;31(12):2841–55.

    Article  PubMed  Google Scholar 

  7. Brewer CJ, Balen AH. The adverse effects of obesity on conception and implantation. Reproduction. 2010;140(3):347–64.

    Article  CAS  PubMed  Google Scholar 

  8. Chatzakis C, et al. Different pregnancy outcomes according to the polycystic ovary syndrome diagnostic criteria: a systematic review and meta-analysis of 79 studies. Fertil Steril. 2022;117(4):854–81.

    Article  PubMed  Google Scholar 

  9. Clark AM, et al. Weight loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Hum Reprod. 1995;10(10):2705–12.

    Article  CAS  PubMed  Google Scholar 

  10. Comstock IA, et al. Does an increased body mass index affect endometrial gene expression patterns in infertile patients? A functional genomics analysis. Fertil Steril. 2017;107(3):740-748.e742.

    Article  PubMed  Google Scholar 

  11. Conway G, et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014;171(4):P1-29.

    Article  CAS  PubMed  Google Scholar 

  12. Diamanti-Kandarakis E. Role of obesity and adiposity in polycystic ovary syndrome. Int J Obes (Lond). 2007;31 Suppl 2:S8-13 (discussion S31-12).

    Article  CAS  PubMed  Google Scholar 

  13. Einarsson S, et al. Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. Hum Reprod. 2017;32(8):1621–30.

    Article  PubMed  Google Scholar 

  14. Fedorcsák P, et al. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod. 2004;19(11):2523–8.

    Article  PubMed  Google Scholar 

  15. Gambineri A, et al. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2002;26(7):883–96.

    Article  CAS  PubMed  Google Scholar 

  16. Goldman RH, et al. The combined impact of maternal age and body mass index on cumulative live birth following in vitro fertilization. Am J Obstet Gynecol. 2019;221(6):617.e611-617.e613.

    Article  Google Scholar 

  17. Goyal M, Dawood AS. Debates regarding lean patients with polycystic ovary syndrome: a narrative review. J Hum Reprod Sci. 2017;10(3):154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grodstein F, et al. Body mass index and ovulatory infertility. Epidemiology. 1994;5(2):247–50.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes LM, et al. Maternal body mass index is not associated with increased rates of maternal embryonic aneuploidy. Fertil Steril. 2022;117(4):783–9.

    Article  PubMed  Google Scholar 

  20. Jungheim ES, et al. IVF outcomes in obese donor oocyte recipients: a systematic review and meta-analysis. Hum Reprod. 2013;28(10):2720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kakoly NS, et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum Reprod Update. 2018;24(4):455–67.

    Article  CAS  PubMed  Google Scholar 

  22. Lake JK, et al. Women’s reproductive health: the role of body mass index in early and adult life. Int J Obes Relat Metab Disord. 1997;21(6):432–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lim SS, et al. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.

    Article  CAS  PubMed  Google Scholar 

  24. Lim SS, et al. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;3:CD007506.

    PubMed  Google Scholar 

  25. Luke B, et al. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod. 2011;26(1):245–52.

    Article  PubMed  Google Scholar 

  26. March WA, et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–51.

    Article  PubMed  Google Scholar 

  27. Onalan G, et al. Predictive value of glucose-insulin ratio in PCOS and profile of women who will benefit from metformin therapy: obese, lean, hyper or normoinsulinemic? Eur J Obstet Gynecol Reprod Biol. 2005;123(2):204–11.

    Article  PubMed  Google Scholar 

  28. Orvieto R, et al. Ovarian stimulation in polycystic ovary syndrome patients: the role of body mass index. Reprod Biomed Online. 2009;18(3):333–6.

    Article  PubMed  Google Scholar 

  29. Palomba S, et al. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–92.

    Article  PubMed  Google Scholar 

  30. Palomba S, et al. Endometrial function in women with polycystic ovary syndrome:a comprehensive review. Hum Reprod Update. 2021;27(3):584–618.

    Article  CAS  PubMed  Google Scholar 

  31. Palomba S, et al. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab. 2017;28(3):186–98.

    Article  CAS  PubMed  Google Scholar 

  32. Pasquali R. Obesity and androgens: facts and perspectives. Fertil Steril. 2006;85(5):1319–40.

    Article  CAS  PubMed  Google Scholar 

  33. Pelanis R, et al. The prevalence of Type 2 diabetes is not increased in normal-weight women with PCOS. Hum Reprod. 2017;32(11):2279–86.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenfield RL, et al. Determination of the source of androgen excess in functionally atypical polycystic ovary syndrome by a short dexamethasone androgen-suppression test and a low-dose ACTH test. Hum Reprod. 2011;26(11):3138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sam S. Obesity and polycystic ovary syndrome. Obes Manag. 2007;3(2):69–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sam S, et al. Evidence for metabolic and reproductive phenotypes in mothers of women with polycystic ovary syndrome. Proc Natl Acad Sci U S A. 2006;103(18):7030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stepto NK, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28(3):777–84.

    Article  CAS  PubMed  Google Scholar 

  38. Teede HJ, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602–18.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Toosy S, et al. Lean polycystic ovary syndrome (PCOS): an evidence-based practical approach. J Diabetes Metab Disord. 2018;17(2):277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vaughan DA, et al. How many oocytes are optimal to achieve multiple live births with one stimulation cycle? The one-and-done approach. Fertil Steril. 2017;107(2):397-404.e393.

    Article  PubMed  Google Scholar 

  41. Welt CK, Carmina E. Clinical review: Lifecycle of polycystic ovary syndrome (PCOS): from in utero to menopause. J Clin Endocrinol Metab. 2013;98(12):4629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, Fritzilas N, Hakenberg J, Dutta A, Shon J, Xu J, Batzoglou S, Li X, Kai K. Predicting the clinical impact of human mutation with deep neural networks. https://doi.org/10.1038/s41588-018-0167-z.

  43. Yildiz BO, et al. Impact of obesity on the risk for polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  44. Zaadstra BM, et al. Fat and female fecundity: prospective study of effect of body fat distribution on conception rates. BMJ. 1993;306(6876):484–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Fouks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouks, Y., Neuhausser, W., Ryley, D. et al. ART outcomes in lean compared to obese phenotypes of polycystic ovarian syndrome. J Assist Reprod Genet 40, 1437–1445 (2023). https://doi.org/10.1007/s10815-023-02804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02804-0

Keywords

Navigation