Skip to main content
Log in

Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to identify the genetic cause of primary ciliary dyskinesia (PCD) and male infertility in two unrelated Han Chinese families.

Methods

We performed whole-exome sequencing in two unrelated male Han Chinese patients suffering from infertility and PCD to identify the pathogenic variants. Ultrastructural and immunostaining analyses of patient’s spermatozoa were performed to characterize the effect of the variants. The pathogenicity of the variants was validated using patient’s spermatozoa by western blotting and immunostaining analysis. Intracytoplasmic sperm injection (ICSI) was conducted in the affected families.

Results

Three variants in leucine-rich repeat containing 6 (LRRC6) [patient 1(compound heterozygote): NM_012472: c.538C > T, (p.R180*) and c.64dupT, (p.S22Ffs*19); patient 2 (homozygote): c.863C > A, (p.P288H)] were identified in two unrelated patients with PCD and male infertility. These variants were predicated deleterious and were absent or rare in human population genome data. LRRC6-mutant spermatozoa showed a highly aberrant morphology and ultrastructure with lacked inner and outer dynein arms. The LRRC6 protein was present along the normal sperm flagella, and was significantly decreased in the mutated spermatozoa. Interestingly, both patients were able to conceive through ICSI and birthed a healthy baby.

Conclusion

Our results extend the LRRC6 variant spectrum and provide reproductive guidance to families suffering from PCD-linked infertility caused by LRRC6 variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Heidary Z, Saliminejad K, Zaki-Dizaji M, KhorramKhorshid HR. Genetic aspects of idiopathic asthenozoospermia as a cause of male infertility. Hum Fertil (Camb). 2020;23(2):83–92. https://doi.org/10.1080/14647273.2018.1504325.

    Article  CAS  Google Scholar 

  2. Bonnefoy S, Watson CM, Kernohan KD, Lemos M, Hutchinson S, Poulter JA, et al. Biallelic mutations in LRRC56, encoding a protein associated with intraflagellar transport, cause mucociliary clearance and laterality defects. Am J Hum Genet. 2018;103(5):727–39. https://doi.org/10.1016/j.ajhg.2018.10.003.

    Article  CAS  Google Scholar 

  3. Hoben IM, Hjeij R, Olbrich H, Dougherty GW, Nothe-Menchen T, Aprea I, et al. Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet. 2018;102(5):973–84. https://doi.org/10.1016/j.ajhg.2018.03.025.

    Article  CAS  Google Scholar 

  4. Barbato A, Frischer T, Kuehni CE, Snijders D, Azevedo I, Baktai G, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J. 2009;34(6):1264–76. https://doi.org/10.1183/09031936.00176608.

    Article  CAS  Google Scholar 

  5. Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007;69:423–50. https://doi.org/10.1146/annurev.physiol.69.040705.141301.

    Article  CAS  Google Scholar 

  6. Hannah MM, Enza MV. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241(4):564. https://doi.org/10.1002/path.4881.

  7. Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Noone PG, Carson JL, et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med. 2006;174(8):858–66. https://doi.org/10.1164/rccm.200603-370OC.

    Article  CAS  Google Scholar 

  8. Horani A, Ferkol TW. Advances in the genetics of primary ciliary dyskinesia: clinical implications. Chest. 2018;154(3):645–52. https://doi.org/10.1016/j.chest.2018.05.007.

    Article  Google Scholar 

  9. Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet. 2017;91(2):217–32. https://doi.org/10.1111/cge.12905.

    Article  CAS  Google Scholar 

  10. El Khouri E, Thomas L, Jeanson L, Bequignon E, Vallette B, Duquesnoy P, et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet. 2016;99(2):489–500. https://doi.org/10.1016/j.ajhg.2016.06.022.

    Article  CAS  Google Scholar 

  11. Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 2012;91(5):958–64. https://doi.org/10.1016/j.ajhg.2012.10.003.

    Article  CAS  Google Scholar 

  12. Inaba Y, Shinohara K, Botilde Y, Nabeshima R, Takaoka K, Ajima R, et al. Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells. 2016;21(7):728–39. https://doi.org/10.1111/gtc.12380.

    Article  CAS  Google Scholar 

  13. Vanaken GJ, Bassinet L, Boon M, Mani R, Honore I, Papon JF, et al. Infertility in an adult cohort with primary ciliary dyskinesia: phenotype-gene association. Eur Respir J. 2017;50(5):1700314. https://doi.org/10.1183/13993003.00314-2017.

  14. Li Y, Jiang C, Zhang X, Liu M, Sun Y, Yang Y, et al. The effect of a novel LRRC6 mutation on the flagellar ultrastructure in a primary ciliary dyskinesia patient. J Assist Reprod Genet. 2021;38(3):689–96. https://doi.org/10.1007/s10815-020-02036-6.

    Article  Google Scholar 

  15. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zurLage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013;93(2):346–56. https://doi.org/10.1016/j.ajhg.2013.07.009.

    Article  CAS  Google Scholar 

  16. Horani A, Ferkol TW, Shoseyov D, Wasserman MG, Oren YS, Kerem B, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436. https://doi.org/10.1371/journal.pone.0059436.

    Article  CAS  Google Scholar 

  17. Liu L, Luo H. Whole-exome sequencing identified a novel compound heterozygous mutation of LRRC6 in a Chinese primary ciliary dyskinesia patient. Biomed Res Int. 2018;2018:1854269. https://doi.org/10.1155/2018/1854269.

    Article  CAS  Google Scholar 

  18. Yue Y, Huang Q, Zhu P, Zhao P, Tan X, Liu S, et al. Identification of pathogenic mutations and investigation of the NOTCH pathway activation in Kartagener syndrome. Front Genet. 2019;10:749. https://doi.org/10.3389/fgene.2019.00749.

    Article  CAS  Google Scholar 

  19. Guan Y, Yang H, Yao X, Xu H, Liu H, Tang X, et al. Clinical and genetic spectrum of children with primary ciliary dyskinesia in China. Chest. 2021;159(5):1768–81. https://doi.org/10.1016/j.chest.2021.02.006.

    Article  CAS  Google Scholar 

  20. Postema MC, Carrion-Castillo A, Fisher SE, Vingerhoets G, Francks C. The genetics of situs inversus without primary ciliary dyskinesia. Sci Rep. 2020;10(1):3677. https://doi.org/10.1038/s41598-020-60589-z.

    Article  CAS  Google Scholar 

  21. Gileles-Hillel A, Mor-Shaked H, Shoseyov D, Reiter J, Tsabari R, Hevroni A, et al. Whole-exome sequencing accuracy in the diagnosis of primary ciliary dyskinesia. ERJ Open Res. 2020;6(4):00213-2020. https://doi.org/10.1183/23120541.00213-2020.

  22. Fassad MR, Shoman WI, Morsy H, Patel MP, Radwan N, Jenkins L, et al. Clinical and genetic spectrum in 33 Egyptian families with suspected primary ciliary dyskinesia. Clin Genet. 2020;97(3):509–15. https://doi.org/10.1111/cge.13661.

    Article  CAS  Google Scholar 

  23. Riazuddin S, Hussain M, Razzaq A, Iqbal Z, Shahzad M, Polla DL, et al. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol Psychiatry. 2017;22(11):1604–14. https://doi.org/10.1038/mp.2016.109.

    Article  CAS  Google Scholar 

  24. Andjelkovic M, Minic P, Vreca M, Stojiljkovic M, Skakic A, Sovtic A, et al. Genomic profiling supports the diagnosis of primary ciliary dyskinesia and reveals novel candidate genes and genetic variants. PLoS One. 2018;13(10):e0205422. https://doi.org/10.1371/journal.pone.0205422.

    Article  CAS  Google Scholar 

  25. Zhao X, Bian C, Liu K, Xu W, Liu Y, Tian X, et al. Clinical characteristics and genetic spectrum of 26 individuals of Chinese origin with primary ciliary dyskinesia. Orphanet J Rare Dis. 2021;16(1):293. https://doi.org/10.1186/s13023-021-01840-2.

    Article  Google Scholar 

  26. Boaretto F, Snijders D, Salvoro C, Spalletta A, Mostacciuolo ML, Collura M, et al. Diagnosis of primary ciliary dyskinesia by a targeted next-generation sequencing panel: molecular and clinical findings in Italian patients. J Mol Diagn. 2016;18(6):912–22. https://doi.org/10.1016/j.jmoldx.2016.07.002.

    Article  CAS  Google Scholar 

  27. Wang W, Tu C, Nie H, Meng L, Li Y, Yuan S, et al. Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. J Med Genet. 2019;56(11):750–7. https://doi.org/10.1136/jmedgenet-2019-106031.

    Article  CAS  Google Scholar 

  28. He WB, Tu CF, Liu Q, Meng LL, Yuan SM, Luo AX, et al. DMC1 mutation that causes human non-obstructive azoospermia and premature ovarian insufficiency identified by whole-exome sequencing. J Med Genet. 2018;55(3):198–204. https://doi.org/10.1136/jmedgenet-2017-104992.

    Article  CAS  Google Scholar 

  29. Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med. 2019;21(5):1209–17. https://doi.org/10.1038/gim.2017.130.

    Article  CAS  Google Scholar 

  30. He WB, Banerjee S, Meng LL, Du J, Gong F, Huang H, et al. Whole-exome sequencing identifies a homozygous donor splice-site mutation in STAG3 that causes primary ovarian insufficiency. Clin Genet. 2018;93(2):340–4. https://doi.org/10.1111/cge.13034.

    Article  CAS  Google Scholar 

  31. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. https://doi.org/10.1093/nar/gkq603.

    Article  CAS  Google Scholar 

  32. Collins SA, Gove K, Walker W, Lucas JS. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J. 2014;44(6):1589–99. https://doi.org/10.1183/09031936.00088614.

    Article  Google Scholar 

  33. Aprea I, Raidt J, Hoben IM, Loges NT, Nothe-Menchen T, Pennekamp P, et al. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet. 2021;17(2):e1009306. https://doi.org/10.1371/journal.pgen.1009306.

    Article  CAS  Google Scholar 

  34. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  Google Scholar 

  35. Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, et al. ZMYND10 functions in a chaperone relay during axonemal dynein assembly, Elife. 2018;7. https://doi.org/10.7554/eLife.34389.

  36. Zhang J, He X, Wu H, Zhang X, Yang S, Liu C, et al. Loss of DRC1 function leads to multiple morphological abnormalities of the sperm flagella and male infertility in human and mouse. Hum Mol Genet. 2021;30(21):1996–2011. https://doi.org/10.1093/hmg/ddab171.

    Article  CAS  Google Scholar 

  37. Zhou S, Wu H, Zhang J, He X, Liu S, Zhou P, et al. Bi-allelic variants in human TCTE1/DRC5 cause asthenospermia and male infertility. Eur J Hum Genet. 2022;30(6):721–9. https://doi.org/10.1038/s41431-022-01095-w.

    Article  CAS  Google Scholar 

  38. Wang L, Wang R, Yang D, Lu C, Xu Y, Liu Y, et al. Novel RSPH4A variants associated with primary ciliary dyskinesia-related infertility in three chinese families. Front Genet. 2022;13:922287. https://doi.org/10.3389/fgene.2022.922287.

    Article  CAS  Google Scholar 

  39. Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, et al. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A. 2018;115(6):E1221–8. https://doi.org/10.1073/pnas.1715915115.

    Article  CAS  Google Scholar 

  40. McLachlan RI, Ishikawa T, Osianlis T, Robinson P, Merriner DJ, Healy D, et al. Normal live birth after testicular sperm extraction and intracytoplasmic sperm injection in variant primary ciliary dyskinesia with completely immotile sperm and structurally abnormal sperm tails. Fertil Steril. 2012;97(2):313–8. https://doi.org/10.1016/j.fertnstert.2011.11.003.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the affected individuals and their families for participating in and supporting this study. This work was supported by the National Natural Science Foundation of China (81971447 and 82171608 to Y-Q.T, 82101961 to C.T), a key grant from the Prevention and Treatment of Birth Defects from Hunan Province (2019SK1012 to Y-Q.T), Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220519 to YR.W), and research grants from CITIC-Xiangya (YNXM-202004 and YNXM-202006).

Author information

Authors and Affiliations

Authors

Contributions

Chaofeng Tu, Huan Zhang, and Huanzhu Li designed the study. Ying Wang, Lanlan Meng, and Chen Tan performed the variant analysis. Yunhao Li, Yong Li, Juan Du, Yue-Qiu Tan, and Hongchuan Nie carried out the evaluation of the pathogenicity of variations and spermatozoa functional analyses. Qianjun Zhang, Guangxiu Lu, and Ge Lin worked on the clinical study. Yunhao Li, Yong Li, Chaofeng Tu, Huan Zhang, and Huanzhu Li wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huanzhu Li, Huan Zhang or Chaofeng Tu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10815_2022_2681_MOESM1_ESM.pptx

Figure S1. Computed tomography of the patient’s lungs revealing diffuse bronchiectasis but not situs inversus. (PPTX 244 KB)

Supplementary file2 (DOCX 20.0 KB)

Supplementary file3 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Wang, Y. et al. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet 40, 41–51 (2023). https://doi.org/10.1007/s10815-022-02681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02681-z

Keywords

Navigation