Skip to main content

Advertisement

Log in

Modeling methods for busulfan-induced oligospermia and asthenozoospermia in mice: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

Modeling methods for busulfan-induced oligoasthenozoospermia are controversial. We aimed to systematically review the modeling method of busulfan-induced oligospermia and asthenozoospermia, and analyze changes in various evaluation indicators at different busulfan doses over time.

Methods

We searched the Cochrane Library, PubMed databases, Web of Science, the Chinese National Knowledge Infrastructure, and the Chinese Biomedical Literature Service System until April 9, 2022. Animal experiments of busulfan-induced spermatogenesis dysfunction were included and screened. The model mortality and parameters of the evaluation indicators were subjected to meta-analysis.

Results

Twenty-nine animal studies were included (control/model: 669/1829). The mortality of mice increased with busulfan dose. Significant spermatogenesis impairment occurred within 5 weeks, regardless of busulfan dose (10–40 mg/kg). Testicular weight (weighted mean difference [WMD]: − 0.04, 95% CI: − 0.05, − 0.03), testicular index (WMD: − 2.10, 95% CI: − 2.43, − 1.76), and Johnsen score (WMD: − 4.67, 95% CI: − 5.99, − 3.35) were significantly decreased. The pooled sperm counts of the model group were reduced by 32.8 × 106/ml (WMD: − 32.8, 95% CI: − 44.34, − 21.28), and sperm motility decreased by 37% (WMD: − 0.37, 95% CI: − 0.47, − 0.27). Sperm counts decreased slightly (WMD: − 3.03, 95% CI: − 3.42, − 2.64) in an intratesticular injection of low-dose busulfan (4 − 6 mg/kg), and the model almost returned to normal after one seminiferous cycle.

Conclusion

The model using low-dose busulfan (10 − 20 mg/kg) returned to normal after 10 − 15 weeks. However, in some spermatogenesis cycles, testicular weight reduction and testicular spermatogenic function damage were not proportional to busulfan dose. Sperm counts and motility results in different studies had significant heterogeneity. Standard protocols for sperm assessment in animal models were needed to reduce heterogeneity between studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References 

  1. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012.

    Article  Google Scholar 

  2. Agarwal A, Baskaran S, Parekh N, et al. Male infertility. Lancet. 2021;397:319–33. https://doi.org/10.1016/s0140-6736(20)32667-2.

    Article  Google Scholar 

  3. Zohni K, Zhang X, Tan SL, et al. The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice. Hum Reprod. 2012;27:44–53. https://doi.org/10.1093/humrep/der357.

    Article  CAS  Google Scholar 

  4. Borg CL, Wolski KM, Gibbs GM, et al. Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer.’ Hum Reprod Update. 2010;16:205–24. https://doi.org/10.1093/humupd/dmp032.

    Article  Google Scholar 

  5. Wang H. Chen L [A brief review of animal model of spermatogenesis dysfunction]. Chin J Hum Sex. 2017;26:102–4.

    Google Scholar 

  6. Liu W, Zhang L, Gao A, et al. Food-derived high arginine peptides promote spermatogenesis recovery in busulfan treated mice. Front Cell Dev Biol. 2021;9: 791471. https://doi.org/10.3389/fcell.2021.791471.

    Article  Google Scholar 

  7. Ziaeipour S, Rezaei F, Piryaei A, et al. Hyperthermia versus busulfan: finding the effective method in animal model of azoospermia induction. Andrologia. 2019;51: e13438. https://doi.org/10.1111/and.13438.

    Article  Google Scholar 

  8. Boekelheide K. Mechanisms of toxic damage to spermatogenesis. J Natl Cancer Inst Monogr. 2005;34:6–8. https://doi.org/10.1093/jncimonographs/lgi006.

    Article  CAS  Google Scholar 

  9. Chang Z, Qin W, Zheng H, et al. Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nat Commun. 2021;12:1253. https://doi.org/10.1038/s41467-021-21517-5.

    Article  CAS  Google Scholar 

  10. Chen X, Liang M, Wang D. Progress on the study of the mechanism of busulfan cytotoxicity. Cytotechnology. 2018;70:497–502. https://doi.org/10.1007/s10616-018-0189-5.

    Article  CAS  Google Scholar 

  11. Huang WL, Ding L, Yao JH, et al. Testicular quantitative ultrasound: a noninvasive monitoring method for evaluating spermatogenic function in busulfan-induced testicular injury mouse models. Andrologia. 2020;53: e13927. https://doi.org/10.1111/and.13927.

    Article  CAS  Google Scholar 

  12. Xie Y, Deng CC, Ouyang B, et al. Establishing a nonlethal and efficient mouse model of male gonadotoxicity by intraperitoneal busulfan injection. Asian J Androl. 2020;22:184–91. https://doi.org/10.4103/aja.aja_41_19.

    Article  CAS  Google Scholar 

  13. Wang DZ. The effect of busulfan on production of testicular germ cells, sexual behaviour and sterility of male mice [Doctor thesis]. Wuhan University; 2010.

    Google Scholar 

  14. Ibrahim HF, Safwat SH, Zeitoun TM, et al. The therapeutic potential of amniotic fluid-derived stem cells on busulfan-induced azoospermia in Adult Rats. Tissue Eng Regen Med. 2021;18:279–95. https://doi.org/10.1007/s13770-020-00309-w.

    Article  CAS  Google Scholar 

  15. Rezaei F, Bayat M, Nazarian H, et al. Photobiomodulation therapy improves spermatogenesis in busulfan-induced infertile mouse. Reprod Sci. 2021;28:2789–98. https://doi.org/10.1007/s43032-021-00557-8.

    Article  CAS  Google Scholar 

  16. Zhao J, Wang M, Wang Y, et al. Endoplasmic reticulum stress promotes blood-testis barrier impairment in mice with busulfan-induced oligospermia through PERK-eIF2α signaling pathway. Toxicology. 2022;473: 153193. https://doi.org/10.1016/j.tox.2022.153193.

    Article  CAS  Google Scholar 

  17. Luo J, Yang Y, Ji X, et al. NGF rescues spermatogenesis in azoospermic mice. Reprod Sci. 2021;28:2780–8. https://doi.org/10.1007/s43032-021-00511-8.

    Article  CAS  Google Scholar 

  18. Kraeuter AK, Phillips R, Sarnyai Z. The gut microbiome in psychosis from mice to men: a systematic review of preclinical and clinical studies. Front Psychiatry. 2020;11:799. https://doi.org/10.3389/fpsyt.2020.00799.

    Article  Google Scholar 

  19. Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.

    Article  Google Scholar 

  20. Wang YB, Liu GS, Zhu SE, et al. Model establishment of transplantation of spermatogonial stem cells in mice. Chinese Journal of Comparative Medicine. 2007;17:676–680+701.

  21. Zhang W, Xia XY, Ding H, et al. Establishment of recipient mouse model of stem cell transplantation into testicular seminiferous tubules and improvement of transplantation techniques. Zhonghua nan ke xue. 2009;15:703–7.

    Google Scholar 

  22. Zhang C, Wang LL, Jin HM, et al. Induction of azoospermia model in mice by busulfan. J New Med. 2003;13:201–2.

    CAS  Google Scholar 

  23. Luo XM, Zhang C, Yang SX, et al. Murine model of busulfan-induced spermatogenesis regeneration: a quantitative evaluation. Zhonghua nan ke xue. 2010;16:395–9.

    CAS  Google Scholar 

  24. Li JP, Guo WB, He JC, et al. Establishing a mouse model of Sertoli-cell-only syndrome by administration of busulfan. Zhonghua nan ke xue. 2013;19:300–5.

  25. Zhang S. Preliminary establishment of mouse model for spermatogonial stem cell transplants [Master thesis]. Guangxi University; 2014.

    Google Scholar 

  26. Qin YS. Testicular injection of busulfan for recipient preparation in transplantation of spermatogonial stem cells in mice [Master thesis]. Jilin Agricultural University; 2014.

    Google Scholar 

  27. Wang J, Xue X, Fan C, et al. Establishment of recipient model for spermatogonial stem cells transplantation in Kunming mice. Tissue Cell. 2014;46:249–54. https://doi.org/10.1016/j.tice.2014.05.005.

    Article  CAS  Google Scholar 

  28. Bao G, Wang SM, Zhang CY, et al. Establishing azoospermia model with busulfan in three strains of mice. J Reprod Med. 2015;24:7.

    Google Scholar 

  29. Wang JH, Xie QQ, Fan CY, et al. Establishment of transplantation model for spermatogonial stem cells in Kunming mice with busulfan treatment. J Northwest A & F Univ-Nat Sci Ed. 2015;43:51–6.

    Google Scholar 

  30. Sheng WJ, Lei B. Effects of single-dose busulfan injection on the function of major organs in mice. Guangdong Med J. 2017;38:1684–1685+1690.

  31. Li HY, Wang HF, Meng XL, et al. Establishment of NOA model in BALB/c mice induced by busulfan. Chinese Journal of Reprodctive Health. 2021;32:247–251+302.

  32. Zhang SC, He B, Wang SM, et al. Comparative study on the effects of Wuziyanzong Pills and Jinkuishenqi Pills on spermatogenesis function. Chinese Journal of Family Planning. 2009;17:401–4.

    Google Scholar 

  33. Wei G, Chen XH, Zhang SC, et al. Study on gene expression profiling of Wuzi Yanzong Wan in regaining spermatogenic ability in mouse with azoospermia. Journal of Hebei TCM and Pharmacology. 2012;27:4–7+2.

  34. Qu N, Kuramasu M, Hirayanagi Y, et al. Gosha-Jinki-Gan recovers spermatogenesis in mice with busulfan-induced aspermatogenesis. Int J Mol Sci. 2018;19:2606. https://doi.org/10.3390/ijms19092606.

    Article  CAS  Google Scholar 

  35. Meng XD. Study on spermatogenesis and molecular mechanism of Wuziyanzong pill [thesis of master]. Beijing University of Chinese Medicine; 2020.

    Google Scholar 

  36. Zhao X, Liu Z, Gao J, et al. Inhibition of ferroptosis attenuates busulfan-induced oligospermia in mice. Toxicology. 2020;440: 152489. https://doi.org/10.1016/j.tox.2020.152489.

    Article  CAS  Google Scholar 

  37. Wang HH, Zhang L, Xu RH, et al. Effect of Duzhong Butiansu capsule on busulfan-induced spermatogenic impairment in mice. Tradis Chin Drug Res Clin Pharmacol. 2020;31:69–78.

    Google Scholar 

  38. Ji ZY, Yao CC, Zhao JP, et al. Protective effect of L-carnitine on spermatogenic dysfunction mouse model. Shanghai Medical Journal. 2021;44:316–20.

    Google Scholar 

  39. Moghadam MT, Dadfar R, Khorsandi L. The effects of ozone and melatonin on busulfan-induced testicular damage in mice. JBRA Assist Reprod. 2021;25:176–84. https://doi.org/10.5935/1518-0557.20200081.

    Article  Google Scholar 

  40. Yu S, Zhao Y, Zhang FL, et al. Chestnut polysaccharides benefit spermatogenesis through improvement in the expression of important genes. Aging (Albany NY). 2020;12:11431–45. https://doi.org/10.18632/aging.103205.

    Article  CAS  Google Scholar 

  41. Chen Z, Liu M, Hu JH, et al. Substance P restores spermatogenesis in busulfan-treated mice: a new strategy for male infertility therapy. Biomed Pharmacother. 2021;133: 110868. https://doi.org/10.1016/j.biopha.2020.110868.

    Article  CAS  Google Scholar 

  42. Zhao X, Sang M, Han P, et al. Peptides from the croceine croaker (Larimichthys crocea) swim bladder attenuate busulfan-induced oligoasthenospermia in mice. Pharm Biol. 2022;60:319–25. https://doi.org/10.1080/13880209.2022.2034895.

    Article  CAS  Google Scholar 

  43. Ji M, Minami N, Yamada M, et al. Effect of protopanaxatriol saponin on spermatogenic stem cell survival in busulfan-treated male mice. Reprod Med Biol. 2007;6:99–108.

    Article  CAS  Google Scholar 

  44. Wang CN, Sang MM, Gong SN, et al. Two resveratrol analogs, pinosylvin and 4,4’-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Bioorg Chem. 2020;104: 104295.

    Article  CAS  Google Scholar 

  45. Wu C, Zhang Y, Shen Q, et al. Resveratrol changes spermatogonial stem cells (SSCs) activity and ameliorates their loss in busulfan-induced infertile mouse. Oncotarget. 2016;7:82085–96. https://doi.org/10.18632/oncotarget.12990.

    Article  Google Scholar 

  46. Johnsen SG. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones. 1970;1:2–25. https://doi.org/10.1159/000178170.

    Article  CAS  Google Scholar 

  47. Ito Y, Unagami M, Yamabe F, et al. A method for utilizing automated machine learning for histopathological classification of testis based on Johnsen scores. Sci Rep. 2021;11:9962. https://doi.org/10.1038/s41598-021-89369-z.

    Article  CAS  Google Scholar 

  48. Moisan AE, Foster RA, Betteridge KJ, et al. Dose-response of RAG2-/-/gammac-/- mice to busulfan in preparation for spermatogonial transplantation. Reproduction. 2003;126:205–16. https://doi.org/10.1530/rep.0.1260205.

    Article  CAS  Google Scholar 

  49. Björndahl L, Kirkman Brown J. The sixth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil Steril. 2022;117:246–51. https://doi.org/10.1016/j.fertnstert.2021.12.012.

    Article  Google Scholar 

  50. Sáez-Espinosa P, Robles-Gómez L, Ortega-López L, Aizpurua J, Gómez-Torres MJ. Immunofluorescence and high-resolution microscopy reveal new insights in human globozoospermia. Int J Mol Sci. 2022;23(3):1729. https://doi.org/10.3390/ijms23031729.

    Article  CAS  Google Scholar 

  51. Shang Y, Zhu F, Wang L, Ouyang YC, Dong MZ, Liu C, et al. Essential role for SUN5 in anchoring sperm head to the tail. eLife. 2017;6:e28199.

    Article  Google Scholar 

  52. Gutierrez K, Glanzner WG, Chemeris RO, Rigo ML, Comim FV, Bordignon V, et al. Gonadotoxic effects of busulfan in two strains of mice. Reprod Toxicol (Elmsford, NY). 2016;59:31–9. https://doi.org/10.1016/j.reprotox.2015.09.002.

    Article  CAS  Google Scholar 

  53. Bucci LR, Meistrich ML. Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res. 1987;176(2):259–68. https://doi.org/10.1016/0027-5107(87)90057-1.

    Article  CAS  Google Scholar 

  54. Gutierrez K, Glanzner WG, Chemeris RO, et al. Gonadotoxic effects of busulfan in two strains of mice. Reprod Toxicol. 2016;59:31–9. https://doi.org/10.1016/j.reprotox.2015.09.002.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of China (No. 81673248).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NC, RP; methodology: RP, JL, AZ; software: RP, JL, DS; validation: AZ, XR, YL, WZ; formal analysis: HH, XL, LL, YW; investigation and data curation: RP, WZ; writing-original draft: RP, JY, JL; writing-review and editing: RP, JY, NC; supervision: YB, NC.

Corresponding author

Correspondence to Ning Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, R., Liu, J., Zhang, A. et al. Modeling methods for busulfan-induced oligospermia and asthenozoospermia in mice: a systematic review and meta-analysis. J Assist Reprod Genet 40, 19–32 (2023). https://doi.org/10.1007/s10815-022-02674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02674-y

Keywords

Navigation