Skip to main content
Log in

The effect of ovarian stimulation on aneuploidy of early aborted tissues and preimplantation blastocysts: comparison of the GnRH agonist long protocol with the GnRH antagonist protocol

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To compare aneuploidy rates in early aborted tissues or blastocysts between in vitro fertilization (IVF) cycles after the gonadotropin-releasing hormone (GnRH) antagonist (GnRH-ant) protocol or the GnRH agonist (GnRH-a) long protocol.

Methods

This was a retrospective cohort study from a university-affiliated fertility center. In total, 550 early miscarriage patients who conceived through IVF/intracytoplasmic sperm injection (ICSI) after receiving the GnRH-ant or GnRH-a long protocol were analyzed to compare aneuploidy rates in early aborted tissues. To compare aneuploidy rates in blastocysts, 404 preimplantation genetic testing for aneuploidy (PGT-A) cycles with the GnRH-ant protocol or GnRH-a long protocol were also analyzed.

Results

For early miscarriage patients who conceived through IVF/ICSI, compared to the GnRH-a long protocol group, the GnRH-ant protocol group had a significantly higher rate of aneuploidy in early aborted tissues (48.51% vs. 64.19%). Regarding PGT-A cycles, the rate of blastocyst aneuploidy was significantly higher in the GnRH-ant protocol group than the GnRH-a long protocol group (39.69% vs. 52.27%). After stratification and multiple linear regression, the GnRH-ant regimen remained significantly associated with an increased risk of aneuploidy in early aborted tissues and blastocysts [OR (95% CI) 1.81 (1.21, 2.71), OR (95% CI) 1.65 (1.13, 2.42)]. Furthermore, the blastocyst aneuploidy rate in the GnRH-ant protocol group was significantly higher but only in young and normal ovarian responders [OR (95% CI) 5.07 (1.99, 12.92)].

Conclusion

Compared to the GnRH-a long protocol, the GnRH-ant protocol is associated with a higher aneuploidy rate in early aborted tissues and blastocysts. These results should be confirmed in a multicenter, randomized controlled trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/Supplementary Material.

References

  1. Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, Nikiforov D, Chan AC, Newnham LJ, Vogel I, et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science (New York, NY). 2019;365(6460):1466–9.

    Article  CAS  Google Scholar 

  2. Rai R, Regan L. Recurrent miscarriage. Lancet (London, England). 2006;368(9535):601–11.

    Article  Google Scholar 

  3. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656-663.e651.

    Article  PubMed  Google Scholar 

  4. Haddad G, Deng M, Wang CT, Witz C, Williams D, Griffith J, Skorupski J, Gill J, Wang WH. Assessment of aneuploidy formation in human blastocysts resulting from donated eggs and the necessity of the embryos for aneuploidy screening. J Assist Reprod Genet. 2015;32(6):999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat Res. 2020;785:108320.

    Article  CAS  Google Scholar 

  6. Derrick R, Hickman C, Oliana O, Wilkinson T, Gwinnett D, Whyte LB, Carby A, Lavery S. Perivitelline threads associated with fragments in human cleavage stage embryos observed through time-lapse microscopy. Reprod Biomed Online. 2017;35(6):640–5.

    Article  PubMed  Google Scholar 

  7. Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27(2):170–207.

    Article  PubMed  Google Scholar 

  8. Li G, Wu Y, Niu W, Xu J, Hu L, Shi H, Sun Y. Analysis of the number of euploid embryos in preimplantation genetic testing cycles with early-follicular phase long-acting gonadotropin-releasing hormone agonist long protocol. Front Endocrinol. 2020;11:424.

    Article  Google Scholar 

  9. Cascales A, Lledo B, Ortiz JA, Morales R, Ten J, Llacer J, Bernabeu R. Effect of ovarian stimulation on embryo aneuploidy and mosaicism rate. Syst Biol Reprod Med. 2021;67(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ubaldi FM, Capalbo A, Vaiarelli A, Cimadomo D, Colamaria S, Alviggi C, Trabucco E, Venturella R, Vajta G, Rienzi L. Follicular versus luteal phase ovarian stimulation during the same menstrual cycle (DuoStim) in a reduced ovarian reserve population results in a similar euploid blastocyst formation rate: new insight in ovarian reserve exploitation. Fertil Steril. 2016;105(6):1488-1495.e1481.

    Article  PubMed  Google Scholar 

  11. Yang R, Guan Y, Perrot V, Ma J, Li R. Comparison of the long-acting GnRH agonist follicular protocol with the GnRH antagonist protocol in women undergoing in vitro fertilization: a systematic review and meta-analysis. Adv Ther 2021.

  12. Wang R, Lin S, Wang Y, Qian W, Zhou L. Comparisons of GnRH antagonist protocol versus GnRH agonist long protocol in patients with normal ovarian reserve: a systematic review and meta-analysis. PLoS ONE. 2017;12(4):e0175985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xiao JS, Su CM, Zeng XT. Comparisons of GnRH antagonist versus GnRH agonist protocol in supposed normal ovarian responders undergoing IVF: a systematic review and meta-analysis. PLoS ONE. 2014;9(9):e106854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lambalk CB, Banga FR, Huirne JA, Toftager M, Pinborg A, Homburg R, van der Veen F, van Wely M. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update. 2017;23(5):560–79.

    Article  CAS  PubMed  Google Scholar 

  15. Bahceci M, Ulug U, Sismanoglu A, Tosun S, Cengiz B. Early pregnancy loss rates were different among singleton gestations conceived by ICSI using GnRH agonist and antagonist. J Assist Reprod Genet. 2009;26(4):227–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maldonado LG, Franco JG Jr, Setti AS, Iaconelli A Jr, Borges E Jr. Cost-effectiveness comparison between pituitary down-regulation with a gonadotropin-releasing hormone agonist short regimen on alternate days and an antagonist protocol for assisted fertilization treatments. Fertil Steril. 2013;99(6):1615–22.

    Article  PubMed  Google Scholar 

  17. Hu L, Du J, Lv H, Zhao J, Chen M, Wang Y, Wu F, Liu F, Chen X, Zhang J, et al. Influencing factors of pregnancy loss and survival probability of clinical pregnancies conceived through assisted reproductive technology. Reprod Biol Endocrinol. 2018;16(1):74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lv H, Diao F, Du J, Chen T, Meng Q, Ling X, Li H, Song C, Xi Q, Jiang Y et al. Assisted reproductive technology and birth defects in a Chinese birth cohort study. Lancet Reg Health - West Pac. 2021;7.

  19. Colley E, Hamilton S, Smith P, Morgan NV, Coomarasamy A, Allen S. Potential genetic causes of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update. 2019;25(4):452–72.

    Article  CAS  PubMed  Google Scholar 

  20. Hartman RJ, Rasmussen SA, Botto LD, Riehle-Colarusso T, Martin CL, Cragan JD, Shin M, Correa A. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32(8):1147–57.

    Article  PubMed  Google Scholar 

  21. Davis AR, Horvath SK, Castano PM. Trends in gestational age at time of surgical abortion for fetal aneuploidy and structural abnormalities. Am J Obstet Gynecol. 2017;216(3):278 e271-278 e275.

    Article  Google Scholar 

  22. Ozgur K, Berkkanoglu M, Bulut H, Humaidan P, Coetzee K. Perinatal outcomes after fresh versus vitrified-warmed blastocyst transfer: retrospective analysis. Fertil Steril. 2015;104(4):899-907.e893.

    Article  PubMed  Google Scholar 

  23. Thorne J, Loza A, Kaye L, Nulsen J, Benadiva C, Grow D, Engmann L. Euploidy rates between cycles triggered with gonadotropin-releasing hormone agonist and human chorionic gonadotropin. Fertil Steril. 2019;112(2):258–65.

    Article  CAS  PubMed  Google Scholar 

  24. Spielmann H, Vogel R. Genotoxic and embryotoxic effects of gonadotropin hyperstimulated ovulation on murine oocytes, preimplantation embryos and term fetuses. Ann Ist Super Sanita. 1993;29(1):35–9.

    CAS  PubMed  Google Scholar 

  25. Roberts R, Iatropoulou A, Ciantar D, Stark J, Becker DL, Franks S, Hardy K. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biol Reprod. 2005;72(1):107–18.

    Article  CAS  PubMed  Google Scholar 

  26. McCulloh DH, Alikani M, Norian J, Kolb B, Arbones JM, Munne S. Controlled ovarian hyperstimulation (COH) parameters associated with euploidy rates in donor oocytes. Eur J Med Genet. 2019;62(8):103707.

    Article  PubMed  Google Scholar 

  27. Sachdeva K, Upadhyay D, Discutido R, Varghese MM, Albuz F, Almekosh R, Bouhafs L, Solkar S, Stevikova M, Peramo B. Low gonadotropin dosage reduces aneuploidy in human preimplantation embryos: first clinical study in a UAE population. Genet Test Mol Biomarkers. 2018;22(10):630–4.

    Article  CAS  PubMed  Google Scholar 

  28. Baart EB, Martini E, Eijkemans MJ, Van Opstal D, Beckers NG, Verhoeff A, Macklon NS, Fauser BC. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod (Oxford, England). 2007;22(4):980–8.

    Article  Google Scholar 

  29. Katz-Jaffe MG, Trounson AO, Cram DS. Chromosome 21 mosaic human preimplantation embryos predominantly arise from diploid conceptions. Fertil Steril. 2005;84(3):634–43.

    Article  PubMed  Google Scholar 

  30. Wu Q, Li H, Zhu Y, Jiang W, Lu J, Wei D, Yan J, Chen ZJ. Dosage of exogenous gonadotropins is not associated with blastocyst aneuploidy or live-birth rates in PGS cycles in Chinese women. Hum Reprod. 2018;33(10):1875–82.

    Article  CAS  PubMed  Google Scholar 

  31. Barash OO, Hinckley MD, Rosenbluth EM, Ivani KA, Weckstein LN. High gonadotropin dosage does not affect euploidy and pregnancy rates in IVF PGS cycles with single embryo transfer. Hum Reprod. 2017;32(11):2209–17.

    Article  CAS  PubMed  Google Scholar 

  32. Sekhon L, Shaia K, Santistevan A, Cohn KH, Lee JA, Beim PY, Copperman AB. The cumulative dose of gonadotropins used for controlled ovarian stimulation does not influence the odds of embryonic aneuploidy in patients with normal ovarian response. J Assist Reprod Genet. 2017;34(6):749–58.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Irani M, Canon C, Robles A, Maddy B, Gunnala V, Qin X, Zhang C, Xu K, Rosenwaks Z. No effect of ovarian stimulation and oocyte yield on euploidy and live birth rates: an analysis of 12 298 trophectoderm biopsies. Hum Reprod (Oxford, England). 2020;35(5):1082–9.

    Article  CAS  Google Scholar 

  34. Munne S, Alikani M, Ribustello L, Colls P, Martinez-Ortiz PA, McCulloh DH, Referring Physician G. Euploidy rates in donor egg cycles significantly differ between fertility centers. Hum Reprod. 2017;32(4):743–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yang R, Guan Y, Perrot V, Ma J, Li R. Comparison of the long-acting GnRH agonist follicular protocol with the GnRH antagonist protocol in women undergoing in vitro fertilization: a systematic review and meta-analysis. Adv Ther. 2021;38(5):2027–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Battaglia DE, Goodwin P, Klein NA, Soules MR. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11(10):2217–22.

    Article  CAS  PubMed  Google Scholar 

  37. Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, Liang XY. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod. 2007;22(6):1681–6.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Wu XQ, Lu S, Guo YL, Ma X. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res. 2006;16(10):841–50.

    Article  CAS  PubMed  Google Scholar 

  39. Lee M, Ahn JI, Lee AR, Ko DW, Yang WS, Lee G, Ahn JY, Lim JM. Adverse effect of superovulation treatment on maturation, function and ultrastructural integrity of murine oocytes. Mol Cells. 2017;40(8):558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie JK, Wang Q, Zhang TT, Yin S, Zhang CL, Ge ZJ. Repeated superovulation may affect mitochondrial functions of cumulus cells in mice. Sci Rep. 2016;6:31368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong G, Guo Y, Cao H, Zhou T, Zhou Z, Sha J, Guo X, Zhu H. Long-term effects of repeated superovulation on ovarian structure and function in rhesus monkeys. Fertil Steril. 2014;102(5):1452-1457 e1451.

    Article  CAS  PubMed  Google Scholar 

  42. Xiao P, Nie J, Wang X, Lu K, Lu S, Liang X. Melatonin alleviates the deterioration of oocytes from mice subjected to repeated superovulation. J Cell Physiol. 2019;234(8):13413–22.

    Article  CAS  PubMed  Google Scholar 

  43. Al-Zubaidi U, Adhikari D, Cinar O, Zhang QH, Yuen WS, Murphy MP, Rombauts L, Robker RL, Carroll J. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Hum Reprod. 2021;36(3):771–84.

    Article  CAS  PubMed  Google Scholar 

  44. Perkins AT, Das TM, Panzera LC, Bickel SE. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A. 2016;113(44):E6823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the patients who participated in this study.

Funding

This work was supported by the National Natural Science Foundation of China (81671463) and the Shaanxi Province Key R & D Program General Project (2021SF-012).

Author information

Authors and Affiliations

Authors

Contributions

Jun Wang collected the data and prepared all the tables and wrote the main manuscript, Jing Zhang and Nan Zhao collected the data, Shuqiang Chen searched the literature and designed the study, and Xiaohong Wang revised the manuscript. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Shuqiang Chen or Xiaohong Wang.

Ethics declarations

Ethics approval and consent to participate

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. This study was approved by the ethics committee of the Tang Du Hospital of the Air Force Military Medical University, China (K202108-09). All patients provided written informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J., Zhao, N. et al. The effect of ovarian stimulation on aneuploidy of early aborted tissues and preimplantation blastocysts: comparison of the GnRH agonist long protocol with the GnRH antagonist protocol. J Assist Reprod Genet 39, 1927–1936 (2022). https://doi.org/10.1007/s10815-022-02557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02557-2

Keywords

Navigation