Skip to main content

Advertisement

Log in

Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Long non-coding RNAs (lncRNAs) control gene expression at multiple levels. By interacting with microRNAs (miRNAs), they regulate their mRNA targets creating dynamic regulatory networks involved in different cellular processes. Their role in follicle development and oocyte maturation has recently emerged. lncRNA deregulation has been found associated with different pathological conditions. In this study, we identified differentially expressed lncRNAs in cumulus cells (CCs) isolated from MII oocytes of advanced maternal age women and proposed ceRNA-networks involved in signaling pathways crucial in ovarian folliculogenesis and female germ cell maturation.

Methods

We performed a high-throughput analysis of the expression profile of 68 lncRNAs from CCs of aged and young women by using NanoString technology. By miRNet, TarPmiR, miRTarBase, OKdb, and KEGG we predicted some ceRNA-networks involving the differentially expressed (DE) lncRNAs, miRNA interactors, and their mRNA target genes.

Results

We identified 28 lncRNAs down-regulated in CC samples from aged women. The analysis revealed that the miRNAs binding 11 of the DE lncRNAs and their mRNA targets are included in ceRNA-networks involved in the regulation of the PI3K-Akt, FOXO, and p53 signaling pathways.

Conclusion

We proposed that the lncRNA down-regulation in CCs from aged women could influence the expression of genes encoding proteins deregulated in reproductive aging. A better understanding of the interplay of lncRNA-miRNA-mRNA networks in human CCs could increase our knowledge about the mechanisms of regulation of gene expression involved in aging, lead to the development of novel therapeutics, and improve reproductive outcomes in aged women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109(7):2093–100. https://doi.org/10.1111/cas.13642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol. 2019;112:82–92. https://doi.org/10.1016/j.molimm.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  3. Tay Y, Rinn J, Pandolfi PP. 2014 The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52. https://doi.org/10.1038/nature12986.

  4. Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, et al. 2019 Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 2019;20(22). https://doi.org/10.3390/ijms20225573.

  5. Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–51. https://doi.org/10.1038/s41556-019-0311-8.

    Article  CAS  PubMed  Google Scholar 

  6. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14. https://doi.org/10.1016/j.molcel.2011.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouckenheimer J, Fauque P, Lecellier CH, Bruno C, Commes T, Lemaitre JM, et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep. 2018;8(1):2202. https://doi.org/10.1038/s41598-018-20727-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bolha L, Ravnik-Glavac M, Glavac D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968. https://doi.org/10.1155/2017/7243968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592(17):2884–900. https://doi.org/10.1002/1873-3468.13182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sen R, Ghosal S, Das S, Balti S, Chakrabarti J. Competing endogenous RNA: the key to posttranscriptional regulation. ScientificWorldJournal. 2014;2014: 896206. https://doi.org/10.1155/2014/896206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niu ZS, Wang WH, Dong XN, Tian LM. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol. 2020;26(29):4240–60. https://doi.org/10.3748/wjg.v26.i29.4240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9.

    Article  CAS  PubMed  Google Scholar 

  13. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7. https://doi.org/10.1038/ng.710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu XF, Li J, Cao YX, Chen DW, Zhang ZG, He XJ, et al. Differential expression of long noncoding RNAs in human cumulus cells related to embryo developmental potential: a microarray analysis. Reprod Sci. 2015;22(6):672–8. https://doi.org/10.1177/1933719114561562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Battaglia R, Vento ME, Borzi P, Ragusa M, Barbagallo D, Arena D, et al. Non-coding RNAs in the ovarian follicle. Front Genet. 2017;8:57. https://doi.org/10.3389/fgene.2017.00057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hutt KJ, Albertini DF. An oocentric view of folliculogenesis and embryogenesis. Reprod Biomed Online. 2007;14(6):758–64. https://doi.org/10.1016/s1472-6483(10)60679-7.

    Article  CAS  PubMed  Google Scholar 

  17. Dell’Aversana C, Cuomo F, Longobardi S, D’Hooghe T, Caprio F, Franci G, et al. Age-related miRNome landscape of cumulus oophorus cells during controlled ovarian stimulation protocols in IVF cycles. Hum Reprod. 2021;36(5):1310–25. https://doi.org/10.1093/humrep/deaa364.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Al-Edani T, Assou S, Ferrieres A, Bringer Deutsch S, Gala A, Lecellier CH, et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res Int. 2014;2014: 964614. https://doi.org/10.1155/2014/964614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McReynolds S, Dzieciatkowska M, McCallie BR, Mitchell SD, Stevens J, Hansen K, et al. 2012 Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril. 2012;98(6):1574–80 e5. https://doi.org/10.1016/j.fertnstert.2012.08.012.

  20. Battaglia R, Musumeci P, Ragusa M, Barbagallo D, Scalia M, Zimbone M, et al. 2020 Ovarian aging increases small extracellular vesicle CD81(+) release in human follicular fluid and influences miRNA profiles. Aging (Albany NY). 2020;12(12):12324–41. https://doi.org/10.18632/aging.103441.

  21. Guglielmino MR, Santonocito M, Vento M, Ragusa M, Barbagallo D, Borzi P, et al. TAp73 is downregulated in oocytes from women of advanced reproductive age. Cell Cycle. 2011;10(19):3253–6. https://doi.org/10.4161/cc.10.19.17585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Battaglia R, Vento ME, Ragusa M, Barbagallo D, La Ferlita A, Di Emidio G, et al. MicroRNAs are stored in human MII oocyte and their expression profile changes in reproductive aging. Biol Reprod. 2016;95(6):131. https://doi.org/10.1095/biolreprod.116.142711.

    Article  CAS  PubMed  Google Scholar 

  23. Santonocito M, Guglielmino MR, Vento M, Ragusa M, Barbagallo D, Borzi P, et al. The apoptotic transcriptome of the human MII oocyte: characterization and age-related changes. Apoptosis. 2013;18(2):201–11. https://doi.org/10.1007/s10495-012-0783-5.

    Article  CAS  PubMed  Google Scholar 

  24. Andrei D, Nagy RA, van Montfoort A, Tietge U, Terpstra M, Kok K, et al. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles. Microrna. 2019;8(1):61–7. https://doi.org/10.2174/2211536607666180912152618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng L, Teerds K, Tang Z, Zuo B, Hong L. Editorial: non-coding RNAs in reproductive biology. Front Cell Dev Biol. 2021;9: 712467. https://doi.org/10.3389/fcell.2021.712467.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yerushalmi GM, Salmon-Divon M, Yung Y, Maman E, Kedem A, Ophir L, et al. Characterization of the human cumulus cell transcriptome during final follicular maturation and ovulation. Mol Hum Reprod. 2014;20(8):719–35. https://doi.org/10.1093/molehr/gau031.

    Article  CAS  PubMed  Google Scholar 

  27. Liu K, Mao X, Chen Y, Li T, Ton H. Regulatory role of long non-coding RNAs during reproductive disease. Am J Transl Res. 2018;10(1):1–12.

    PubMed  PubMed Central  Google Scholar 

  28. Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update. 2016;23(1):19–40. https://doi.org/10.1093/humupd/dmw035.

    Article  CAS  PubMed  Google Scholar 

  29. Ernst EH, Nielsen J, Ipsen MB, Villesen P, Lykke-Hartmann K. Transcriptome analysis of long non-coding RNAs and genes encoding paraspeckle proteins during human ovarian follicle development. Front Cell Dev Biol. 2018;6:78. https://doi.org/10.3389/fcell.2018.00078.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Wang J, Fan Y, Qin C, Xia X, Johnson J, et al. Absence of the long noncoding RNA H19 results in aberrant ovarian STAR and progesterone production. Mol Cell Endocrinol. 2019;490:15–20. https://doi.org/10.1016/j.mce.2019.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Felici M, Klinger FG. 2021 PI3K/PTEN/AKT signaling pathways in germ cell development and their involvement in germ cell tumors and ovarian dysfunctions. Int J Mol Sci. 2021;22(18). https://doi.org/10.3390/ijms22189838.

  32. Makker A, Goel MM, Mahdi AA. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update. J Mol Endocrinol. 2014;53(3):R103–18. https://doi.org/10.1530/JME-14-0220.

    Article  CAS  PubMed  Google Scholar 

  33. Maidarti M, Anderson RA, Telfer EE. 2020 Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing. Cells. 2020;9(1). https://doi.org/10.3390/cells9010200.

  34. Zhang H, Lin F, Zhao J, Wang Z. Expression regulation and physiological role of transcription factor FOXO3a during ovarian follicular development. Front Physiol. 2020;11: 595086. https://doi.org/10.3389/fphys.2020.595086.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xia X, Burn MS, Chen Y, Karakaya C, Kallen A. The relationship between H19 and parameters of ovarian reserve. Reprod Biol Endocrinol. 2020;18(1):46. https://doi.org/10.1186/s12958-020-00578-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Qi M, Fei X, Wang X, Wang K. lncRNA H19: a novel oncogene in multiple cancers. Int J Biol Sci. 2021;17(12):3188–208. https://doi.org/10.7150/ijbs.62573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu ZR, Yan L, Liu YT, Cao L, Guo YH, Zhang Y, et al. Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun. 2018;9(1):4624. https://doi.org/10.1038/s41467-018-06853-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res. 2018;37(1):223. https://doi.org/10.1186/s13046-018-0898-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carafa V, Nebbioso A, Altucci L. Sirtuins and disease: the road ahead. Front Pharmacol. 2012;3:4. https://doi.org/10.3389/fphar.2012.00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Scientific Bureau of the University of Catania for the language support, the Centro Servizi B.R.I.T. of the University of Catania and Fondi di Ateneo 2020–2022, University of Catania, Open Access line.

Funding

This study was funded by Merck KGaA, Darmstadt, Germany.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.C. performed the experiments, analyzed and interpreted the data, and wrote the manuscript. R.B. and C.F. performed the experiments and analyzed and interpreted the data. M.E.V., P.B., and M.P. collected the CC samples and clinical data. P.S. and M.P. revised critically the manuscript. S.L. and T.D.H. participated in the study design and revised critically the manuscript. D.V. participated in the study design and coordination. C.D.P. participated in the study design, coordination, data analysis, and interpretation and wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Cinzia Di Pietro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest except S.L. and T.D.H. who are fully employed by Merck KGaA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caponnetto, A., Battaglia, R., Ferrara, C. et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells. J Assist Reprod Genet 39, 919–931 (2022). https://doi.org/10.1007/s10815-022-02446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02446-8

Keywords

Navigation