Skip to main content

Advertisement

Log in

Antioxidant supplementations ameliorate PCOS complications: a review of RCTs and insights into the underlying mechanisms

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most important gynecological disorders of women in the age of reproduction. Different hormonal and inflammatory cross-talks may play in the appearance of its eventual complications as a leading cause of infertility. Excessive production of reactive oxygen species over the power of the antioxidant system as oxidative stress is known to contribute to a variety of diseases like PCOS. Thus, the utilization of antioxidants can be efficient in preventing or assistant in treating these diseases. In this review, we describe the clinical trial studies that have examined the efficiency of antioxidant strategies against PCOS and the possible underlying mechanisms. The investigations presented here lead us to consider that targeting oxidative stress pathways is probably a powerful promising therapeutic approach towards PCOS. There is preparatory evidence of the effectiveness of antioxidant interventions in ameliorating some of the PCOS complications, including metabolic and hormonal disorders. Due to limited data and relatively few clinical trials, many of these interventions need further investigation before they can be considered effective agents for routine clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vannuccini S, Clifton VL, Fraser IS, Taylor HS, Critchley H, Giudice LC, Petraglia F. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum Reprod Update. 2016;22(1):104–15. https://doi.org/10.1093/humupd/dmv044.

    Article  CAS  PubMed  Google Scholar 

  2. C. Hu, B. Pang, Z. Ma, H. Yi, Immunophenotypic profiles in polycystic ovary syndrome, mediators Inflamm. 2020;(2020):5894768.

  3. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467–520. https://doi.org/10.1155/2020/5894768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016;2016:8589318. https://doi.org/10.1155/2016/8589318.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol. 2013;3(1):1–58. https://doi.org/10.1002/cphy.c110062.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bajuk Studen K, Pfeifer M, Cardiometabolic risk in polycystic ovary syndrome, Endocr Connect. 2018;7(7):R238-R251. https://doi.org/10.1530/EC-18-0129.

  7. Mumusoglu BOYS. Polycystic ovary syndrome phenotypes and prevalence: differential impact of diagnostic criteria and clinical versus unselected population. Current Opinion in Endocrine and Metabolic Research. 2020;22:5. https://doi.org/10.1016/j.coemr.2020.03.004.

    Article  Google Scholar 

  8. De Vos M, Pareyn S, Drakopoulos P, Raimundo JM, Anckaert E, Santos-Ribeiro S, Polyzos NP, Tournaye H, Blockeel C. Cumulative live birth rates after IVF in patients with polycystic ovaries: phenotype matters. Reprod Biomed Online. 2018;37(2):163–71. https://doi.org/10.1016/j.rbmo.2018.05.003.

    Article  PubMed  Google Scholar 

  9. N.I.H, Evidence-based methodology workshop on polycystic ovary syndrome, 2012. https://prevention.nih.gov/sites/default/files/2018-06/FinalReport.pdf.

  10. Goldrat O, Delbaere A. PCOS: update and diagnostic approach. Clin Biochem. 2018;62:24–31. https://doi.org/10.1016/j.clinbiochem.2018.09.001.

    Article  PubMed  Google Scholar 

  11. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–92. https://doi.org/10.1093/humupd/dmv029.

    Article  PubMed  Google Scholar 

  12. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49. https://doi.org/10.1186/1477-7827-10-49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Patel S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol. 2018;182:27–36. https://doi.org/10.1016/j.jsbmb.2018.04.008.

    Article  CAS  PubMed  Google Scholar 

  14. Palioura E, Diamanti-Kandarakis E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev Endocr Metab Disord. 2015;16(4):365–71. https://doi.org/10.1007/s11154-016-9326-7.

    Article  CAS  PubMed  Google Scholar 

  15. Sulaiman MA, Al-Farsi YM, Al-Khaduri MM, Saleh J, Waly MI. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Womens Health. 2018;10:763–71. https://doi.org/10.2147/IJWH.S166461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16(1):80. https://doi.org/10.1186/s12958-018-0391-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, He G, Chen M, Zuo T, Xu W, Liu X. The role of antioxidant enzymes in the ovaries. Oxid Med Cell Longev. 2017;2017:4371714. https://doi.org/10.1155/2017/4371714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poston L, Igosheva N, Mistry HD, Seed PT, Shennan AH, Rana S, Karumanchi SA, Chappell LC. Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am J Clin Nutr. 2011;94(6 Suppl):1980S-1985S. https://doi.org/10.3945/ajcn.110.001156.

    Article  CAS  PubMed  Google Scholar 

  19. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164–75. https://doi.org/10.1016/j.cbi.2014.10.016.

    Article  CAS  PubMed  Google Scholar 

  20. Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013: 956792. https://doi.org/10.1155/2013/956792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turan V, Sezer ED, Zeybek B, Sendag F. Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome. J Pediatr Adolesc Gynecol. 2015;28(2):119–23. https://doi.org/10.1016/j.jpag.2014.05.003.

    Article  PubMed  Google Scholar 

  22. Murri M, Luque-Ramirez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19(3):268–88. https://doi.org/10.1093/humupd/dms059.

    Article  CAS  PubMed  Google Scholar 

  23. Palomba S, Santagni S, Falbo A, La Sala GB. Complications and challenges associated with polycystic ovary syndrome: current perspectives. Int J Womens Health. 2015;7:745–63. https://doi.org/10.2147/IJWH.S70314.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Victor VM, Rovira-Llopis S, Banuls C, Diaz-Morales N, Martinez de Maranon A, Rios-Navarro C, Alvarez A, Gomez M, Rocha M, Hernandez-Mijares A. Insulin resistance in PCOS patients enhances oxidative stress and leukocyte adhesion: role of myeloperoxidase. PLoS ONE. 2016;11(3): e0151960. https://doi.org/10.1371/journal.pone.0151960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rocha AL, Oliveira FR, Azevedo RC, Silva VA, Peres TM, Candido AL, Gomes KB, Reis FM, Recent advances in the understanding and management of polycystic ovary syndrome, F1000Res. 2019;8:F1000 Faculty Rev-565. https://doi.org/10.12688/f1000research.15318.1.

  26. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84. https://doi.org/10.1038/nrendo.2018.24.

    Article  PubMed  Google Scholar 

  27. Ong M, Peng J, Jin X, Qu X. Chinese herbal medicine for the optimal management of polycystic ovary syndrome. Am J Chin Med. 2017;45(3):405–22. https://doi.org/10.1142/S0192415X17500252.

    Article  PubMed  Google Scholar 

  28. Banaszewska B, Pawelczyk L, Spaczynski R. Current and future aspects of several adjunctive treatment strategies in polycystic ovary syndrome. Reprod Biol. 2019;19(4):309–15. https://doi.org/10.1016/j.repbio.2019.09.006.

    Article  PubMed  Google Scholar 

  29. Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement Altern Med. 2014;14:511. https://doi.org/10.1186/1472-6882-14-511.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Heydarpour F, Hemati N, Hadi A, Moradi S, Mohammadi E, Farzaei MH. Effects of cinnamon on controlling metabolic parameters of polycystic ovary syndrome: a systematic review and meta-analysis. J Ethnopharmacol. 2020;254: 112741. https://doi.org/10.1016/j.jep.2020.112741.

    Article  CAS  PubMed  Google Scholar 

  31. Arentz S, Smith CA, Abbott J, Fahey P, Cheema BS, Bensoussan A. Combined lifestyle and herbal medicine in overweight women with polycystic ovary syndrome (PCOS): a randomized controlled trial. Phytother Res. 2017;31(9):1330–40. https://doi.org/10.1002/ptr.5858.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arentz S, Smith CA, Abbott J, Bensoussan A. Nutritional supplements and herbal medicines for women with polycystic ovary syndrome; a systematic review and meta-analysis. BMC Complement Altern Med. 2017;17(1):500. https://doi.org/10.1186/s12906-017-2011-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1):71. https://doi.org/10.1186/s12937-016-0186-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohd Mutalip SS, Ab-Rahim S, Rajikin MH, Vitamin E as an antioxidant in female reproductive health, Antioxidants (Basel). 2018;7(2). https://doi.org/10.3390/antiox7020022.

  35. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43(1):4–15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Guo Q, Pei YH, Ren QL, Chi L, Hu RK, Tan Y. Effect of a short-term vitamin E supplementation on oxidative stress in infertile PCOS women under ovulation induction: a retrospective cohort study. BMC Womens Health. 2020;20(1):69. https://doi.org/10.1186/s12905-020-00930-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M.C. Budani, G.M. Tiboni, Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos, Antioxidants (Basel). 2020;9(7). https://doi.org/10.3390/antiox9070612.

  38. Silva ABD, Medeiros JFP, Lima MSR, Mata A, Andrade EDO, Bezerra DS, Osorio MM, Dimenstein R, Ribeiro K. Intrauterine growth and the vitamin e status of full-term and preterm newborns. Rev Paul Pediatr. 2019;37(3):291–6. https://doi.org/10.1590/1984-0462/;2019;37;3;00003.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fatemi F, Mohammadzadeh A, Sadeghi MR, Akhondi MM, Mohammadmoradi S, Kamali K, Lackpour N, Jouhari S, Zafadoust S, Mokhtar S, Giahi L. Role of vitamin E and D3 supplementation in intra-cytoplasmic sperm injection outcomes of women with polycystic ovarian syndrome: a double blinded randomized placebo-controlled trial. Clin Nutr ESPEN. 2017;18:23–30. https://doi.org/10.1016/j.clnesp.2017.01.002.

    Article  PubMed  Google Scholar 

  40. Shokrpour M, Asemi Z. The effects of magnesium and vitamin E co-supplementation on hormonal status and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. Biol Trace Elem Res. 2019;191(1):54–60. https://doi.org/10.1007/s12011-018-1602-9.

    Article  CAS  PubMed  Google Scholar 

  41. Saini R. Coenzyme Q10: the essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466–7. https://doi.org/10.4103/0975-7406.84471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007;37(1):31–7. https://doi.org/10.1007/s12033-007-0052-y.

    Article  CAS  PubMed  Google Scholar 

  43. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660(1–2):171–99. https://doi.org/10.1016/j.bbamem.2003.11.012.

    Article  CAS  PubMed  Google Scholar 

  44. El Refaeey A, Selem A, Badawy A. Combined coenzyme Q10 and clomiphene citrate for ovulation induction in clomiphene-citrate-resistant polycystic ovary syndrome. Reprod Biomed Online. 2014;29(1):119–24. https://doi.org/10.1016/j.rbmo.2014.03.011.

    Article  CAS  PubMed  Google Scholar 

  45. Mobarak H, Heidarpour M, Tsai PJ, Rezabakhsh A, Rahbarghazi R, Nouri M, Mahdipour M. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci. 2019;9:95. https://doi.org/10.1186/s13578-019-0360-5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou J, Peng X, Mei S. Autophagy in ovarian follicular development and atresia. Int J Biol Sci. 2019;15(4):726–37. https://doi.org/10.7150/ijbs.30369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Samimi M, Zarezade Mehrizi M, Foroozanfard F, Akbari H, Jamilian M, Ahmadi S, Asemi Z. The effects of coenzyme Q10 supplementation on glucose metabolism and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial, Clin Endocrinol (Oxf). 2017;86(4):560–566. https://doi.org/10.1111/cen.13288.

  48. Rahmani E, Jamilian M, Samimi M, Zarezade Mehrizi M, Aghadavod E, Akbari E, Tamtaji OR, Asemi Z. The effects of coenzyme Q10 supplementation on gene expression related to insulin, lipid and inflammation in patients with polycystic ovary syndrome. Gynecol Endocrinol. 2018;34(3):217–22. https://doi.org/10.1080/09513590.2017.1381680.

    Article  CAS  PubMed  Google Scholar 

  49. Izadi A, Ebrahimi S, Shirazi S, Taghizadeh S, Parizad M, Farzadi L, Gargari BP. Hormonal and metabolic effects of coenzyme Q10 and/or vitamin E in patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(2):319–27. https://doi.org/10.1210/jc.2018-01221.

    Article  PubMed  Google Scholar 

  50. Izadi A, Shirazi S, Taghizadeh S, Gargari BP. Independent and additive effects of coenzyme Q10 and vitamin E on cardiometabolic outcomes and visceral adiposity in women with polycystic ovary syndrome. Arch Med Res. 2019;50(2):1–10. https://doi.org/10.1016/j.arcmed.2019.04.004.

    Article  CAS  PubMed  Google Scholar 

  51. El-Boshy M, BaSalamah MA, Ahmad J, Idris S, Mahbub A, Abdelghany AH, Almaimani RA, Almasmoum H, Ghaith MM, Elzubier M, Refaat B. Vitamin D protects against oxidative stress, inflammation and hepatorenal damage induced by acute paracetamol toxicity in rat. Free Radic Biol Med. 2019;141:310–21. https://doi.org/10.1016/j.freeradbiomed.2019.06.030.

    Article  CAS  PubMed  Google Scholar 

  52. Tagliaferri S, Porri D, De Giuseppe R, Manuelli M, Alessio F, Cena H. The controversial role of vitamin D as an antioxidant: results from randomised controlled trials. Nutr Res Rev. 2019;32(1):99–105. https://doi.org/10.1017/S0954422418000197.

    Article  CAS  PubMed  Google Scholar 

  53. S.J. Wimalawansa, Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging, Biology (Basel). 2019;8(2). https://doi.org/10.3390/biology8020030.

  54. Ke CY, Yang FL, Wu WT, Chung CH, Lee RP, Yang WT, Subeq YM, Liao KW. Vitamin D3 reduces tissue damage and oxidative stress caused by exhaustive exercise. Int J Med Sci. 2016;13(2):147–53. https://doi.org/10.7150/ijms.13746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Judd SE, Tangpricha V. Vitamin D deficiency and risk for cardiovascular disease. Am J Med Sci. 2009;338(1):40–4. https://doi.org/10.1097/MAJ.0b013e3181aaee91.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Berridge MJ, Vitamin D, reactive oxygen species and calcium signalling in ageing and disease, Philos Trans R Soc Lond B Biol Sci. 2016;371(1700). https://doi.org/10.1098/rstb.2015.0434.

  57. Jamilian M, Foroozanfard F, Rahmani E, Talebi M, Bahmani F, Asemi Z. Effect of two different doses of vitamin d supplementation on metabolic profiles of insulin-resistant patients with polycystic ovary syndrome, Nutrients. 2017;9(12). https://doi.org/10.3390/nu9121280.

  58. Jamilian M, Samimi M, Mirhosseini N, Afshar Ebrahimi F, Aghadavod E, Talaee R, Jafarnejad S, Hashemi Dizaji S, Asemi Z. The influences of vitamin D and omega-3 co-supplementation on clinical, metabolic and genetic parameters in women with polycystic ovary syndrome. J Affect Disord. 2018;238:32–8. https://doi.org/10.1016/j.jad.2018.05.027.

    Article  CAS  PubMed  Google Scholar 

  59. Ostadmohammadi V, Jamilian M, Bahmani F, Asemi Z. Vitamin D and probiotic co-supplementation affects mental health, hormonal, inflammatory and oxidative stress parameters in women with polycystic ovary syndrome. J Ovarian Res. 2019;12(1):5. https://doi.org/10.1186/s13048-019-0480-x.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Irani M, Seifer DB, Grazi RV, Julka N, Bhatt D, Kalgi B, Irani S, Tal O, Lambert-Messerlian G, Tal R. Vitamin D supplementation decreases TGF-beta1 bioavailability in PCOS: a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2015;100(11):4307–14. https://doi.org/10.1210/jc.2015-2580.

    Article  CAS  PubMed  Google Scholar 

  61. Fang F, Ni K, Cai Y, Shang J, Zhang X, Xiong C. Effect of vitamin D supplementation on polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract. 2017;26:53–60. https://doi.org/10.1016/j.ctcp.2016.11.008.

    Article  PubMed  Google Scholar 

  62. Azadi-Yazdi M, Nadjarzadeh A, Khosravi-Boroujeni H, Salehi-Abargouei A. The effect of vitamin D supplementation on the androgenic profile in patients with polycystic ovary syndrome: a systematic review and meta-analysis of clinical trials. Horm Metab Res. 2017;49(3):174–9. https://doi.org/10.1055/s-0043-103573.

    Article  CAS  PubMed  Google Scholar 

  63. Akbari M, Ostadmohammadi V, Lankarani KB, Tabrizi R, Kolahdooz F, Heydari ST, Kavari SH, Mirhosseini N, Mafi A, Dastorani M, Asemi Z. The effects of vitamin D supplementation on biomarkers of inflammation and oxidative stress among women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res. 2018;50(4):271–9. https://doi.org/10.1055/s-0044-101355.

    Article  CAS  PubMed  Google Scholar 

  64. Miao CY, Fang XJ, Chen Y, Zhang Q. Effect of vitamin D supplementation on polycystic ovary syndrome: a meta-analysis. Exp Ther Med. 2020;19(4):2641–9. https://doi.org/10.3892/etm.2020.8525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo S, Tal R, Jiang H, Yuan T, Liu Y. Vitamin D supplementation ameliorates metabolic dysfunction in patients with PCOS: a systematicreview of RCTs and insight into the underlying mechanism. Int J Endocrinol. 2020;2020:7850816. https://doi.org/10.1155/2020/7850816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee BJ, Lin JS, Lin YC, Lin PT. Effects of L-carnitine supplementation on oxidative stress and antioxidant enzymes activities in patients with coronary artery disease: a randomized, placebo-controlled trial. Nutr J. 2014;13:79. https://doi.org/10.1186/1475-2891-13-79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 2016;1863(10):2422–35. https://doi.org/10.1016/j.bbamcr.2016.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 2014;533(2):469–76. https://doi.org/10.1016/j.gene.2013.10.017.

    Article  CAS  PubMed  Google Scholar 

  69. Celik F, Kose M, Yilmazer M, Koken GN, Arioz DT, Kanat Pektas M. Plasma L-carnitine levels of obese and non-obese polycystic ovary syndrome patients. J Obstet Gynaecol. 2017;37(4):476–9. https://doi.org/10.1080/01443615.2016.1264375.

    Article  CAS  PubMed  Google Scholar 

  70. Fenkci SM, Fenkci V, Oztekin O, Rota S, Karagenc N. Serum total L-carnitine levels in non-obese women with polycystic ovary syndrome. Hum Reprod. 2008;23(7):1602–6. https://doi.org/10.1093/humrep/den109.

    Article  CAS  PubMed  Google Scholar 

  71. Ismail AM, Hamed AH, Saso S, Thabet HH. Adding L-carnitine to clomiphene resistant PCOS women improves the quality of ovulation and the pregnancy rate. A randomized clinical trial, Eur J Obstet Gynecol Reprod Biol. 2014;180:148–52. https://doi.org/10.1016/j.ejogrb.2014.06.008.

    Article  CAS  PubMed  Google Scholar 

  72. Samimi M, Jamilian M, Ebrahimi FA, Rahimi M, Tajbakhsh B, Asemi Z. Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf). 2016;84(6):851–7. https://doi.org/10.1111/cen.13003.

    Article  CAS  Google Scholar 

  73. El Sharkwy I, Sharaf El-Din M. l-Carnitine plus metformin in clomiphene-resistant obese PCOS women, reproductive and metabolic effects: a randomized clinical trial. Gynecol Endocrinol. 2019;35(8):701–5. https://doi.org/10.1080/09513590.2019.1576622.

    Article  CAS  PubMed  Google Scholar 

  74. Jamilian H, Jamilian M, Samimi M, Afshar Ebrahimi F, Rahimi M, Bahmani F, Aghababayan S, Kouhi M, Shahabbaspour S, Asemi Z. Oral carnitine supplementation influences mental health parameters and biomarkers of oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Gynecol Endocrinol. 2017;33(6):442–7. https://doi.org/10.1080/09513590.2017.1290071.

    Article  CAS  PubMed  Google Scholar 

  75. Surai PF. Antioxidant action of carnitine: molecular mechanisms and practical applications, EC Veterinary Science. 2015;2(1) 66–84. https://www.ecronicon.com/ecve/pdf/ECVE-02-000010.pdf.

  76. Latifian S, Hamidi K, Totakhneh R. Effect of addition of L-carnitine in polycystic ovary syndrome (PCOS) patients with clomiphene citrate and gonodotropin resistant, Int J Curr Res Acad Rev. 2015;3(8):469–476. http://www.ijcrar.com/vol-3-8/Slomaz%20Latifian,%20et%20al.pdf.

  77. G. WF, The effect of adding L-carnitine to induction of ovulation with letrozole among PCOS patients, Austin J Obstet Gynecol. 2019;6(3):1141. https://austinpublishinggroup.com/obstetrics-gynecology/fulltext/ajog-v6-id1141.php.

  78. de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans. 2007;35(Pt 5):1156–60. https://doi.org/10.1042/BST0351156.

    Article  PubMed  Google Scholar 

  79. B. Salehi, A.P. Mishra, M. Nigam, B. Sener, M. Kilic, M. Sharifi-Rad, P.V.T. Fokou, N. Martins, J. Sharifi-Rad, Resveratrol: a double-edged sword in health benefits, Biomedicines. 2018;6(3). https://doi.org/10.3390/biomedicines6030091.

  80. Furat Rencber S, Kurnaz Ozbek S, Eraldemir C, Sezer Z, Kum T, Ceylan S, Guzel E. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. J Ovarian Res. 2018;11(1):55. https://doi.org/10.1186/s13048-018-0427-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghowsi M, Khazali H, Sisakhtnezhad S. The effect of resveratrol on oxidative stress in the liver and serum of a rat model of polycystic ovary syndrome: an experimental study, Int J Reprod Biomed. 1018;16(3):149–158, Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29766146.

  82. Banaszewska B, Wrotynska-Barczynska J, Spaczynski RZ, Pawelczyk L, Duleba AJ. Effects of resveratrol on polycystic ovary syndrome: a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(11):4322–8. https://doi.org/10.1210/jc.2016-1858.

    Article  CAS  PubMed  Google Scholar 

  83. Bahramrezaie M, Amidi F, Aleyasin A, Saremi A, Aghahoseini M, Brenjian S, Khodarahmian M, Pooladi A. Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: a triple-blind randomized clinical trial. J Assist Reprod Genet. 2019;36(8):1701–12. https://doi.org/10.1007/s10815-019-01461-6.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Brenjian S, Moini A, Yamini N, Kashani L, Faridmojtahedi M, Bahramrezaie M, Khodarahmian M, Amidi F. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am J Reprod Immunol. 2020;83(1): e13186. https://doi.org/10.1111/aji.13186.

    Article  PubMed  Google Scholar 

  85. Iervolino M, Lepore E, Forte G, Lagana AS, Buzzaccarini G, Unfer V. Natural molecules in the management of polycystic ovary syndrome (PCOS): an analytical review. Nutrients. 2021;13(5). https://doi.org/10.3390/nu13051677.

  86. Ochiai A, Kuroda K, Ikemoto Y, Ozaki R, Nakagawa K, Nojiri S, Takeda S, Sugiyama R. Influence of resveratrol supplementation on IVF-embryo transfer cycle outcomes. Reprod Biomed Online. 2019;39(2):205–10. https://doi.org/10.1016/j.rbmo.2019.03.205.

    Article  CAS  PubMed  Google Scholar 

  87. Ochiai A, Kuroda K. Preconception resveratrol intake against infertility: Friend or foe? Reprod Med Biol. 2020;19(2):107–13. https://doi.org/10.1002/rmb2.12303.

    Article  CAS  PubMed  Google Scholar 

  88. Ochiai A, Kuroda K, Ozaki R, Ikemoto Y, Murakami K, Muter J, Matsumoto A, Itakura A, Brosens JJ, Takeda S. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis. 2019;10(4):276. https://doi.org/10.1038/s41419-019-1511-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuroda K, Ochiai A, Brosens JJ. The actions of resveratrol in decidualizing endometrium: acceleration or inhibition?dagger. Biol Reprod. 2020;103(6):1152–6. https://doi.org/10.1093/biolre/ioaa172.

    Article  PubMed  Google Scholar 

  90. Yang K, Zeng L, Bao T, Long Z, Jin B. Exploring the pharmacological mechanism of quercetin-resveratrol combination for polycystic ovary syndrome: a systematic pharmacological strategy-based research. Sci Rep. 2019;9(1):18420. https://doi.org/10.1038/s41598-019-54408-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Song X, Wang Y, Gao L. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex. J Mol Model. 2020;26(6):133. https://doi.org/10.1007/s00894-020-04356-x.

    Article  CAS  PubMed  Google Scholar 

  92. Vasquez-Espinal A, Yanez O, Osorio E, Areche C, Garcia-Beltran O, Ruiz LM, Cassels BK, Tiznado W. Theoretical study of the antioxidant activity of quercetin oxidation products. Front Chem. 2019;7:818. https://doi.org/10.3389/fchem.2019.00818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng YZ, Deng G, Liang Q, Chen DF, Guo R, Lai RC. Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep. 2017;7(1):7543. https://doi.org/10.1038/s41598-017-08024-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84–9. https://doi.org/10.4103/0973-7847.194044.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rashidi Z, Aleyasin A, Eslami M, Nekoonam S, Zendedel A, Bahramrezaie M, Amidi F. Quercetin protects human granulosa cells against oxidative stress via thioredoxin system. Reprod Biol. 2019;19(3):245–54. https://doi.org/10.1016/j.repbio.2019.07.002.

    Article  PubMed  Google Scholar 

  96. Khorshidi M, Moini A, Alipoor E, Rezvan N, Gorgani-Firuzjaee S, Yaseri M, Hosseinzadeh-Attar MJ. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytother Res. 2018;32(11):2282–9. https://doi.org/10.1002/ptr.6166.

    Article  CAS  PubMed  Google Scholar 

  97. Rezvan N, Moini A, Janani L, Mohammad K, Saedisomeolia A, Nourbakhsh M, Gorgani-Firuzjaee S, Mazaherioun M, Hosseinzadeh-Attar MJ. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: a randomized placebo-controlled double-blind clinical trial. Horm Metab Res. 2017;49(2):115–21. https://doi.org/10.1055/s-0042-118705.

    Article  CAS  PubMed  Google Scholar 

  98. Rezvan N, Moini A, Gorgani-Firuzjaee S, Hosseinzadeh-Attar MJ. Oral quercetin supplementation enhances adiponectin receptor transcript expression in polycystic ovary syndrome patients: a randomized placebo-controlled double-blind clinical trial. Cell J. 2018;19(4):627–33. https://doi.org/10.22074/cellj.2018.4577.

    Article  PubMed  Google Scholar 

  99. Salehi B, Stojanovic-Radic Z, Matejic J, Sharifi-Rad M, Anil Kumar NV, Martins N, Sharifi-Rad J. The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem. 2019;163:527–45. https://doi.org/10.1016/j.ejmech.2018.12.016.

    Article  CAS  PubMed  Google Scholar 

  100. Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Curcumin: a therapeutic potential in ageing-related disorders, Pharmanutrition. 2020;14(4). https://doi.org/10.1016/j.phanu.2020.100226.

  101. Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res. 2018;136:181–93. https://doi.org/10.1016/j.jsbmb.2018.04.008.

    Article  CAS  PubMed  Google Scholar 

  102. Qin S, Huang L, Gong J, Shen S, Huang J, Tang Y, Ren H, Hu H. Meta-analysis of randomized controlled trials of 4 weeks or longer suggest that curcumin may afford some protection against oxidative stress. Nutr Res. 2018;60:1–12. https://doi.org/10.1016/j.nutres.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  103. Heshmati J, Golab F, Morvaridzadeh M, Potter E, Akbari-Fakhrabadi M, Farsi F, Tanbakooei S, Shidfar F. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor gamma coactivator 1alpha gene expression in polycystic ovarian syndrome (PCOS) patients: a randomized placebo-controlled clinical trial. Diabetes Metab Syndr. 2020;14(2):77–82. https://doi.org/10.1016/j.dsx.2020.01.002.

    Article  PubMed  Google Scholar 

  104. Sohaei S, Amani R, Tarrahi MJ, Ghasemi-Tehrani H. The effects of curcumin supplementation on glycemic status, lipid profile and hs-CRP levels in overweight/obese women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled clinical trial. Complement Ther Med. 2019;47: 102201. https://doi.org/10.1016/j.ctim.2019.102201.

    Article  PubMed  Google Scholar 

  105. Jamilian M, Foroozanfard F, Kavossian E, Aghadavod E, Shafabakhsh R, Hoseini A, Asemi Z. Effects of curcumin on body weight, glycemic control and serum lipids in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN. 2020;36:128–33. https://doi.org/10.1016/j.clnesp.2020.01.005.

    Article  PubMed  Google Scholar 

  106. Nayaker BS, Thomas S, Ramachandran S, Loganathan S, Sundari M, Mala K. Polycystic ovarian syndrome-associated cardiovascular complications: an overview of the association between the biochemical markers and potential strategies for their prevention and elimination. Diabetes Metab Syndr. 2017;11(Suppl 2):S841–51. https://doi.org/10.1016/j.dsx.2017.07.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardin Amidi.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaei, R., Mahdavinezhad, F., Samadian, E. et al. Antioxidant supplementations ameliorate PCOS complications: a review of RCTs and insights into the underlying mechanisms. J Assist Reprod Genet 38, 2817–2831 (2021). https://doi.org/10.1007/s10815-021-02342-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02342-7

Keywords

Navigation