Skip to main content
Log in

Analysis and quantification of female and male contributions to the first stages of embryonic kinetics: study from a time-lapse system

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The few studies that examined the effect of male and/or female features on early embryo development, notably using the time-lapse system (TL), reported conflicting results. This can be explained by the small number of studies using an adapted model.

Methods

We used two original designs to study the female and male effects on embryo development: (1) based on embryos from donor oocytes (TL-DO), and (2) from donor sperm (TL-DS). Firstly, we analyzed the female and male similarities using an ad hoc intraclass correlation coefficient (ICC), then we completed the analysis with a multivariable model to assess the association between both male and female factors, and early embryo kinetics.

A total of 572 mature oocytes (TL-DO: 293; TL-DS: 279), fertilized by intracytoplasmic sperm injection (ICSI) and incubated in a TL (Embryoscope®) were included from March 2013 to April 2019; 429 fertilized oocytes (TL-DO: 212; TL-DS: 217) were assessed. The timings of the first 48 h have been analyzed.

Results

The similarities in the timings thought to be related to the female component were significant: (ICC in both DO-DS designs respectively: tPB2: 9–18%; tPNa: 16–21%; tPNf: 40–26%; t2: 38–24%; t3: 15–20%; t4: 21–32%). Comparatively, those related to male were lower. Surprisingly after multivariable analyses, no intrinsic female factors were clearly identified. However, in TL-DO design, oligozoospermia was associated with a tendency to longer timings, notably for tPB2 (p = 0.026).

Conclusion

This study quantifies the role of the oocyte in the first embryo cleavages, but without identified specific female factors. However, it also highlights that sperm may have an early embryonic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.

    Article  CAS  PubMed  Google Scholar 

  2. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  3. Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet. 2018;35(11):1953–68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Opstal J, Fieuws S, Spiessens C, Soubry A. Male age interferes with embryo growth in IVF treatment. Hum Reprod. 2021;36(1):107–15.

    PubMed  Google Scholar 

  5. Kaarouch I, Bouamoud N, Madkour A, Louanjli N, Saadani B, Assou S, et al. Paternal age: negative impact on sperm genome decays and IVF outcomes after 40 years. Mol Reprod Dev. 2018;85(3):271–80.

    Article  CAS  PubMed  Google Scholar 

  6. Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update. 2018;24(5):535–55.

    Article  CAS  PubMed  Google Scholar 

  7. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83.

    Article  PubMed  Google Scholar 

  8. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402–12.

    Article  CAS  PubMed  Google Scholar 

  9. Akhter N, Shahab M. Morphokinetic analysis of human embryo development and its relationship to the female age: a retrospective time-lapse imaging study. Cell Mol Biol (Noisy-le-grand) 2017;63(8):84–92.

  10. Faramarzi A, Khalili MA, Mangoli E. Correlations between embryo morphokinetic development and maternal age: results from an intracytoplasmic sperm injection program. Clin Exp Reprod Med. 2019;46(3):119–24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bartolacci A, Buratini J, Moutier C, Guglielmo MC, Novara PV, Brambillasca F, et al. Maternal body mass index affects embryo morphokinetics: a time-lapse study. J Assist Reprod Genet. 2019;36(6):1109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leary C, Leese HJ, Sturmey RG. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum Reprod. 2015;30(1):122–32.

    Article  PubMed  Google Scholar 

  13. Gryshchenko MG, Pravdyuk AI, Parashchyuk VY. Analysis of factors influencing morphokinetic characteristics of embryos in ART cycles. Gynecol Endocrinol. 2014;30(Suppl 1):6–8.

    Article  PubMed  Google Scholar 

  14. Sacha CR, Dimitriadis I, Christou G, James K, Brock ML, Rice ST, et al. The impact of male factor infertility on early and late morphokinetic parameters: a retrospective analysis of 4126 time-lapse monitored embryos. Hum Reprod. 2020;35(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  15. Warshaviak M, Kalma Y, Carmon A, Samara N, Dviri M, Azem F, et al. The effect of advanced maternal age on embryo morphokinetics. Front Endocrinol (Lausanne). 2019;10:686.

    Article  Google Scholar 

  16. Bellver J, Mifsud A, Grau N, Privitera L, Meseguer M. Similar morphokinetic patterns in embryos derived from obese and normoweight infertile women: a time-lapse study. Hum Reprod. 2013;28(3):794–800.

    Article  CAS  PubMed  Google Scholar 

  17. Watcharaseranee N, Ploskonka SD, Goldberg J, Falcone T, Desai N. Does advancing maternal age affect morphokinetic parameters during embryo development? Fertil Steril. 2014;102(3):e213–4.

    Article  Google Scholar 

  18. Buran A, Tulay P, Dayıoğlu N, Bakircioglu ME, Bahceci M, İrez T. Evaluation of the morphokinetic parameters and development of pre-implantation embryos obtained by testicular, epididymal and ejaculate spermatozoa using time-lapse imaging system. Andrologia. 2019;51(4):e13217.

    Article  PubMed  Google Scholar 

  19. Desai N, Gill P, Tadros NN, Goldberg JM, Sabanegh E, Falcone T. Azoospermia and embryo morphokinetics: testicular sperm-derived embryos exhibit delays in early cell cycle events and increased arrest prior to compaction. J Assist Reprod Genet. 2018;35(7):1339–48.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scarselli F, Casciani V, Cursio E, Muzzì S, Colasante A, Gatti S, et al. Influence of human sperm origin, testicular or ejaculated, on embryo morphokinetic development. Andrologia. 2018;50(8):e13061.

    Article  PubMed  Google Scholar 

  21. Esbert M, Pacheco A, Soares SR, Amorós D, Florensa M, Ballesteros A, et al. High sperm DNA fragmentation delays human embryo kinetics when oocytes from young and healthy donors are microinjected. Andrology. 2018;6(5):697–706.

    Article  CAS  PubMed  Google Scholar 

  22. Nikolova S, Parvanov D, Georgieva V, Ivanova I, Ganeva R, Stamenov G. Impact of sperm characteristics on time-lapse embryo morphokinetic parameters and clinical outcome of conventional in vitro fertilization. Andrology 2020;

  23. Gurbuz AS, Gode F, Uzman MS, Ince B, Kaya M, Ozcimen N, et al. GnRH agonist triggering affects the kinetics of embryo development: a comparative study. J Ovarian Res. 2016;9:22.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muñoz M, Cruz M, Humaidan P, Garrido N, Pérez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168(2):167–72.

    Article  PubMed  Google Scholar 

  25. Bodri D, Sugimoto T, Serna JY, Kondo M, Kato R, Kawachiya S, et al. Influence of different oocyte insemination techniques on early and late morphokinetic parameters: retrospective analysis of 500 time-lapse monitored blastocysts. Fertil Steril 2015;104(5):1175–1181.e1–2.

  26. Cruz M, Garrido N, Gadea B, Muñoz M, Pérez-Cano I, Meseguer M. Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reprod Biomed Online. 2013;27(4):367–75.

    Article  PubMed  Google Scholar 

  27. Ciray HN, Aksoy T, Goktas C, Ozturk B, Bahceci M. Time-lapse evaluation of human embryo development in single versus sequential culture media—a sibling oocyte study. J Assist Reprod Genet. 2012;29(9):891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  28. ESHRE Working group on Time-lapse technology, Apter S, Ebner T, Freour T, Guns Y, Kovacic B, et al. Good practice recommendations for the use of time-lapse technology†. Human Reproduction Open 2020;2020(2):hoaa008.

  29. Kirkegaard K, Sundvall L, Erlandsen M, Hindkjær JJ, Knudsen UB, Ingerslev HJ. Timing of human preimplantation embryonic development is confounded by embryo origin. Hum Reprod. 2016;31(2):324–31.

    CAS  PubMed  Google Scholar 

  30. Barberet J, Chammas J, Bruno C, Valot E, Vuillemin C, Jonval L, et al. Randomized controlled trial comparing embryo culture in two incubator systems: G185 K-System versus EmbryoScope. Fertil Steril. 2018;109(2):302-309.e1.

    Article  PubMed  Google Scholar 

  31. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  32. Auger J, Eustache F, David G. Standardisation de la classification morphologique des spermatozoïdes humains selon la méthode de David modifiée. Andrologie. 2000;10(4):358–73.

    Article  Google Scholar 

  33. Goldstein H. Multilevel covariance component models. Biometrika. 1987;74(2):430–1.

    Article  Google Scholar 

  34. Jiang J. Linear and generalized linear mixed models and their applications. Springer-Verlag New York; 2007.

  35. Oehlert GW. A note on the delta method. Am Stat. 1992;46(1):27–9.

    Google Scholar 

  36. Bliese PD. Group size, ICC values, and group-level correlations: a dimulation. Organ Res Methods. 1998;1(4):355–73.

    Article  Google Scholar 

  37. Igarashi H, Takahashi T, Nagase S. Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies. Reprod Med Biol. 2015;14(4):159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cimadomo D, Fabozzi G, Vaiarelli A, Ubaldi N, Ubaldi FM, Rienzi L. Impact of maternal age on oocyte and embryo competence. Front Endocrinol (Lausanne). 2018;9:327.

    Article  Google Scholar 

  39. Balasch J. Ageing and infertility: an overview. Gynecol Endocrinol. 2010;26(12):855–60.

    Article  PubMed  Google Scholar 

  40. Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018;24(3):245–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell. 2017;42(4):316–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 1994;38(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  43. Parinaud J, Mieusset R, Vieitez G, Labal B, Richoilley G. Influence of sperm parameters on embryo quality. Fertil Steril. 1993;60(5):888–92.

    Article  CAS  PubMed  Google Scholar 

  44. Tesarik J. Paternal effects on cell division in the human preimplantation embryo. Reprod Biomed Online. 2005;10(3):370–5.

    Article  PubMed  Google Scholar 

  45. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):154.

    Article  CAS  PubMed  Google Scholar 

  47. Avidor-Reiss T, Mazur M, Fishman EL, Sindhwani P. The role of sperm centrioles in human reproduction—the known and the unknown. Front Cell Dev Biol. 2019;7:188.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Boissonnas CC, Abdalaoui HE, Haelewyn V, Fauque P, Dupont JM, Gut I, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18(1):73–80.

    Article  PubMed  Google Scholar 

  49. Bruno C, Blagoskonov O, Barberet J, Guilleman M, Daniel S, Tournier B, et al. Sperm imprinting integrity in seminoma patients? Clin Epigenetics. 2018;10(1):125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728–33.

    Article  CAS  PubMed  Google Scholar 

  51. Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE. 2007;2(12):e1289.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.

    Article  CAS  PubMed  Google Scholar 

  53. Laurentino S, Beygo J, Nordhoff V, Kliesch S, Wistuba J, Borgmann J, et al. Epigenetic germline mosaicism in infertile men. Hum Mol Genet. 2015;24(5):1295–304.

    Article  CAS  PubMed  Google Scholar 

  54. Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.

    Article  CAS  PubMed  Google Scholar 

  55. Montjean D, Ravel C, Benkhalifa M, Cohen-Bacrie P, Berthaut I, Bashamboo A, et al. Methylation changes in mature sperm deoxyribonucleic acid from oligozoospermic men: assessment of genetic variants and assisted reproductive technology outcome. Fertil Steril. 2013;100(5):1241–7.

    Article  CAS  PubMed  Google Scholar 

  56. Montjean D, Zini A, Ravel C, Belloc S, Dalleac A, Copin H, et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology. 2015;3(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  57. Poplinski A, Tüttelmann F, Kanber D, Horsthemke B, Gromoll J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl. 2010;33(4):642–9.

    CAS  PubMed  Google Scholar 

  58. Santi D, De Vincentis S, Magnani E, Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5(4):695–703.

    Article  CAS  PubMed  Google Scholar 

  59. Sato A, Hiura H, Okae H, Miyauchi N, Abe Y, Utsunomiya T, et al. Assessing loss of imprint methylation in sperm from subfertile men using novel methylation polymerase chain reaction Luminex analysis. Fertil Steril 2011;95(1):129–34, 134.e1–4.

  60. Bowdin S, Allen C, Kirby G, Brueton L, Afnan M, Barratt C, et al. A survey of assisted reproductive technology births and imprinting disorders. Hum Reprod. 2007;22(12):3237–40.

    Article  PubMed  Google Scholar 

  61. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Suzanne Rankin for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CBr and PF were the principal investigators and take primary responsibility for the paper. CBr, FB, BC, JB, AM, and JF contributed to collect the data. PG, MC, CA, and IH were involved in the clinical management of patients. AB and CBi did the statistical analysis. CBr, FB, and PF drafted the manuscript. All authors give their final approval of the version to be published.

Corresponding author

Correspondence to Céline Bruno.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Figure 1: Embryo kinetic outcomes in TL-DO and TL-DS

Kinetic outcomes are expressed in hours, starting from t0 (time of microinjection)

Boxes represent interquartile range (Q1-Q3), bars represent minimum and maximum t0 is the time of microinjection, following kinetic parameters were assessed : the time of second polar body’ expulsion (tPB2), the time of pronuclei appearance and disappearance (respectively tPNa and tPNf), time to two, three, or four blastomeres (t2, t3, t4), s2= t4-t3, cc2 = t3-t2.

Fertilization rates: 77% (TL-DO) and 81% (TL-DS) and cleavage rates : 94% in both studies

Supplementary file1 (DOCX 55 KB)

Supplementary file2 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, C., Bourredjem, A., Barry, F. et al. Analysis and quantification of female and male contributions to the first stages of embryonic kinetics: study from a time-lapse system. J Assist Reprod Genet 39, 85–95 (2022). https://doi.org/10.1007/s10815-021-02336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02336-5

Keywords

Navigation