Skip to main content
Log in

Morphology-based selection from available euploid blastocysts induces male-skewed sex proportion in the offspring

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To determine whether blastocyst morphology has an impact on sex proportion at pre-implantation and birth in PGT-A and non-PGT-A cycles.

Methods

A total of 1254 biopsied blastocysts from 466 PGT-A cycles were analyzed for sex proportion, day of biopsy, degree of expansion, inner cell mass (ICM), and trophectoderm (TE) morphology. From these, 197 frozen single embryo transfers (SET) were assessed for clinical outcomes and sex proportion of ongoing pregnancies and deliveries. In addition, we evaluated the day of vitrification/embryo transfer, degree of expansion, and TE morphology in a group of 229 births (217 cycles) from frozen or fresh transfers of non-biopsied blastocysts.

Results

Sex proportion was impacted by day of biopsy and TE morphology, but not by ICM morphology, in PGT-A cycles. Therefore, biopsy on day 5 and TE “A” shifted the sex proportion towards males. Interestingly, we noted that our morphology-based embryo selection for SET of euploid blastocysts has favored the choice for XY embryos, generating a 54.3% XY proportion at transfer and 56.1% XY proportion at ongoing pregnancy/delivery. Our models indicate a weaker association between blastocyst morphology parameters and sex proportion of babies in non-PGT-A cycles.

Conclusion

Blastocyst features associated with a skewed sex proportion towards XY embryos, such as biopsy on day 5 and top quality TE, are also parameters used for selecting euploid embryos for SET. Therefore, our data suggest that morphology-based embryo selection represents a strong factor responsible for a skewed male sex proportion at birth in PGT-A cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable

References

  1. Hesketh T, Xing ZW. Abnormal sex ratios in human populations: causes and consequences. Proc Natl Acad Sci U S A. 2006;103:13271–5.

    Article  CAS  Google Scholar 

  2. Austad SN. The human prenatal sex ratio a major surprise. Proc Natl Acad Sci U S A. 2015;112:4839–40.

    Article  CAS  Google Scholar 

  3. Sunderam S, Kissin DM, Zhang Y, Jewett A, Boulet SL, Warner L, et al. Assisted reproductive technology surveillance — United States, 2017. MMWR Surveill Summ. 2020;69:1–24.

    Article  Google Scholar 

  4. Gliozheni O, Hambartsoumian E, Strohmer H, Petrovskaya E, Tishkevich O, Bogaerts K, et al. ART in Europe, 2016: results generated from European registries by ESHRE†. Hum Reprod Open. 2020;2020:1–17.

    Google Scholar 

  5. De Croo I, Colman R, De Sutter P, Tilleman K. Blastocyst transfer for all? Higher cumulative live birth chance in a blastocyst-stage transfer policy compared to a cleavage-stage transfer policy. Facts, views Vis ObGyn. 2019;11:169–76.

    Google Scholar 

  6. Ménézo YJ, Chouteau J, Torelló M, Girard A, Veiga A. Birth weight and sex ratio after transfer at the blastocyst stage in humans. Fertil Steril. 1999;72:221–4.

    Article  Google Scholar 

  7. Milki AA, Jun SH, Hinckley MD, Westphal LW, Giudice LC, Behr B. Comparison of the sex ratio with blastocyst transfer and cleavage stage transfer. J Assist Reprod Genet. 2003;20:323–6.

    Article  Google Scholar 

  8. Maalouf WE, Mincheva MN, Campbell BK, Hardy ICW. Effects of assisted reproductive technologies on human sex ratio at birth. Fertil Steril. Elsevier Inc. 2014;101:1321–5. https://doi.org/10.1016/j.fertnstert.2014.01.041.

    Article  PubMed  Google Scholar 

  9. Dean JH, Chapman MG, Sullivan EA. The effect on human sex ratio at birth by assisted reproductive technology (ART) procedures - an assessment of babies born following single embryo transfers, Australia and New Zealand, 2002-2006. BJOG An Int J Obstet Gynaecol. 2010;117:1628–34.

    Article  CAS  Google Scholar 

  10. Chen M, Du J, Zhao J, Lv H, Wang Y, Chen X, et al. The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Sci Rep. Springer US. 2017;7:1–8. https://doi.org/10.1038/s41598-017-06152-9.

    Article  CAS  Google Scholar 

  11. Luna M, Duke M, Copperman A, Grunfeld L, Sandler B, Barritt J. Blastocyst embryo transfer is associated with a sex-ratio imbalance in favor of male offspring. Fertil Steril. Elsevier. 2007;87:519–23.

    Article  Google Scholar 

  12. Shaia K, Truong T, Pieper C, Steiner A. Pre-implantation genetic testing alters the sex ratio: an analysis of 91,805 embryo transfer cycles. J Assist Reprod Genet. 2020;37:1117–22.

    Article  Google Scholar 

  13. Avery B, Madison V, Greve T. Sex and development in bovine in-vitro fertilized embryos. Theriogenology. 1991;35:953–63.

    Article  CAS  Google Scholar 

  14. Valdivia RPA, Kunieda T, Azuma S, Toyoda Y. PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in vitro. Mol Reprod Dev. 1993;35:121–6.

    Article  CAS  Google Scholar 

  15. Bernardi ML, Delouis C. Sex-related differences in the developmental rate of in-vitro matured/in-vitro fertilized ovine embryos. Hum Reprod. 1996;11:621–6.

    Article  CAS  Google Scholar 

  16. Cassar G, King WA, King GJ. Influence of sex on early growth of pig conceptuses. Reproduction. 1994;101:317–20.

    Article  CAS  Google Scholar 

  17. Pegoraro LM, Thuard J, Delalleau N, Guérin B, Deschamps J, Marquant-Le Guienne B, et al. Comparison of sex ratio and cell number of ivm-ivf bovine blastocysts co-cultured with bovine oviduct epithelial cells or with vero cells. Theriogenology. 1998;49:1579–90.

    Article  CAS  Google Scholar 

  18. Sidrat T, Kong R, Khan AA, Idrees M, Xu L, El Sheikh M, et al. Difference in developmental kinetics of Y-specific monoclonal antibody sorted male and female in vitro produced bovine embryos. Int J Mol Sci. 2020;21.

  19. Kawase Y, Tachibe T, Kamada N, Ichi JK, Watanabe H, Suzuki H. Male advantage observed for in vitro fertilization mouse embryos exhibiting early cleavage. Reprod Med Biol. 2021;20:83–7.

    Article  CAS  Google Scholar 

  20. Ray PF, Conaghan J, Winston RML, Handyside AH. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. Reproduction. 1995;104:165–71.

    Article  CAS  Google Scholar 

  21. Alfarawati S, Fragouli E, Colls P, Stevens J, Gutiérrez-Mateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. Elsevier. 2011;95:520–4.

    Article  Google Scholar 

  22. Bronet F, Nogales MC, Martínez E, Ariza M, Rubio C, García-Velasco JA, et al. Is there a relationship between time-lapse parameters and embryo sex? Fertil Steril. Elsevier Inc. 2015;103:396–401.e2. https://doi.org/10.1016/j.fertnstert.2014.10.050.

    Article  PubMed  Google Scholar 

  23. Huang B, Ren X, Zhu L, Wu L, Tan H, Guo N, et al. Is differences in embryo morphokinetic development significantly associated with human embryo sex? Biol Reprod. 2019;100:618–23.

    Article  Google Scholar 

  24. Ebner T, Tritscher K, Mayer RB, Oppelt P, Duba HC, Maurer M, et al. Quantitative and qualitative trophectoderm grading allows for prediction of live birth and gender. J Assist Reprod Genet. 2016;33:49–57.

    Article  Google Scholar 

  25. Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-Adan A. Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction. 2011;141:563–70.

    Article  CAS  Google Scholar 

  26. Zorrilla M, Yatsenko AN. The genetics of infertility: current status of the field. Curr Genet Med Rep. Springer. 2013;1:247–60.

    Article  Google Scholar 

  27. Gelbaya TA, Potdar N, Jeve YB, Nardo LG. Definition and epidemiology of unexplained infertility. Obstet Gynecol Surv. LWW. 2014;69:109–15.

    Article  Google Scholar 

  28. Roos Kulmann MI, Lumertz Martello C, Bos-Mikich A, Frantz N. Pronuclear and blastocyst morphology are associated age-dependently with embryo ploidy in in vitro fertilization cycles. Hum Fertil. Taylor & Francis. 2020:1–8.

  29. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. Elsevier. 2000;73:1155–8.

    Article  CAS  Google Scholar 

  30. Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29:1173–81.

    Article  Google Scholar 

  31. Rubio C, Rodrigo L, Garcia-Pascual C, Peinado V, Campos-Galindo I, Garcia-Herrero S, et al. Clinical application of embryo aneuploidy testing by next-generation sequencing. Biol Reprod. Oxford University Press. 2019;101:1083–90.

    Article  Google Scholar 

  32. Wang A, Kort J, Behr B, Westphal L. Euploidy in relation to blastocyst sex and morphology. J Assist Reprod Genet. 2018;35:1565–72.

    Article  Google Scholar 

  33. Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26:1981–6.

    Article  CAS  Google Scholar 

  34. Gardner DK, Larman MG, Thouas GA. Sex-related physiology of the preimplantation embryo. Mol Hum Reprod. 2010;16:539–47.

    Article  CAS  Google Scholar 

  35. Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ, Lonergan P. Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol Reprod Dev. 2010;77:285–96.

    Article  CAS  Google Scholar 

  36. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165:1012–26.

    Article  CAS  Google Scholar 

  37. De Mello JCM, Fernandes GR, Vibranovski MD, Pereira LV. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci Rep. Springer US. 2017;7:1–12. https://doi.org/10.1038/s41598-017-11044-z.

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Iuri Roos Kulmann.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

All patients had previously given informed consent for the use of their data.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roos Kulmann, M.I., Lumertz Martello, C., Mezzomo Donatti, L. et al. Morphology-based selection from available euploid blastocysts induces male-skewed sex proportion in the offspring. J Assist Reprod Genet 38, 2165–2172 (2021). https://doi.org/10.1007/s10815-021-02235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02235-9

Keywords

Navigation