Skip to main content
Log in

Embryonic MTHFR contributes to blastocyst development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Reduction in methylenetetrahydrofolate reductase (MTHFR) activity due to genetic variations in the MTHFR gene has been controversially implicated in subfertility in human in vitro fertilization. However, there is no direct gene-knockdown study of embryonic MTHFR to assess its involvement in mammalian preimplantation development. The purpose of this study is to investigate expression profiles and functional roles of MTHFR in bovine preimplantation development.

Methods

Reverse transcription-quantitative PCR (RT-qPCR) and analysis of publicly available RNA-seq data were performed to reveal expression levels of MTHFR during bovine preimplantation development. We knocked down MTHFR by siRNA-mediated RNA interference from the 8- to 16-cell stage and assessed the effects on preimplantation development.

Results

The RT-qPCR analysis showed relatively high MTHFR expression at the GV oocyte stage, which was decreased toward the 8- to 16-cell stage and then slightly restored at the blastocyst stage. Public data–based analysis also showed the similar pattern of expression with substantial embryonic expression at the blastocyst stage. MTHFR knockdown reduced the blastocyst rate (P < 0.01) and the numbers of total (P < 0.0001), trophectoderm (P < 0.0001), and inner cell mass (P < 0.001) cells.

Conclusion

The results indicate that embryonic MTHFR is indispensable for normal blastocyst development. The findings provide insight into the debatable roles of MTHFR in fertility and may be applicable for the improvement of care for early embryos via modulation of surrounding folate-related nutritional conditions in vitro and/or in utero, depending on the parental and embryonic MTHFR genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thaler CJ. Folate metabolism and human reproduction. Geburtshilfe Frauenheilkd. 2014;74(9):845–51.

    Article  CAS  Google Scholar 

  2. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006;83(5):993–1016.

    Article  CAS  Google Scholar 

  3. Ikeda S, Koyama H, Sugimoto M, Kume S. Roles of one-carbon metabolism in preimplantation period--effects on short-term development and long-term programming. J Reprod Dev. 2012;58(1):38–43.

    Article  CAS  Google Scholar 

  4. O'Neill C. Endogenous folic acid is essential for normal development of preimplantation embryos. Hum Reprod. 1998;13(5):1312–6.

    Article  CAS  Google Scholar 

  5. Kwong WY, Adamiak SJ, Gwynn A, Singh R, Sinclair KD. Endogenous folates and single-carbon metabolism in the ovarian follicle, oocyte and pre-implantation embryo. Reproduction. 2010;139(4):705–15.

    Article  CAS  Google Scholar 

  6. Zhang B, Denomme MM, White CR, Leung KY, Lee MB, Greene ND, et al. Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts. FASEB J. 2015;29(3):1069–79.

    Article  Google Scholar 

  7. Barber R, van Waes J, Lammer E, Shaw G, Rosenquist T, Finnell R. Folic acid and homocysteine as risk factors for neural tube defects. In: Massaro E, Rogers J, editors. Folate and human development. Totowa: Humana Press; 2002. p. 165–81.

    Chapter  Google Scholar 

  8. Enciso M, Sarasa J, Xanthopoulou L, Bristow S, Bowles M, Fragouli E, et al. Polymorphisms in the MTHFR gene influence embryo viability and the incidence of aneuploidy. Hum Genet. 2016;135(5):555–68.

    Article  CAS  Google Scholar 

  9. Azem F, Many A, Ben Ami I, Yovel I, Amit A, Lessing JB, et al. Increased rates of thrombophilia in women with repeated IVF failures. Hum Reprod. 2004;19(2):368–70.

    Article  Google Scholar 

  10. Qublan HS, Eid SS, Ababneh HA, Amarin ZO, Smadi AZ, Al-Khafaji FF, et al. Acquired and inherited thrombophilia: implication in recurrent IVF and embryo transfer failure. Hum Reprod. 2006;21(10):2694–8.

    Article  CAS  Google Scholar 

  11. D'Elia PQ, dos Santos AA, Bianco B, Barbosa CP, Christofolini DM, Aoki T. MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women. Reprod BioMed Online. 2014;28(6):733–8.

    Article  CAS  Google Scholar 

  12. Dobson AT, Davis RM, Rosen MP, Shen S, Rinaudo PF, Chan J, et al. Methylenetetrahydrofolate reductase C677T and A1298C variants do not affect ongoing pregnancy rates following IVF. Hum Reprod. 2007;22(2):450–6.

    Article  CAS  Google Scholar 

  13. Marci R, Lisi F, Soave I, Lo Monte G, Patella A, Caserta D, et al. Impact of 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase on IVF outcome: is screening necessary for all infertile women? Genet Test Mol Biomarkers. 2012;16(9):1011–4.

    Article  CAS  Google Scholar 

  14. Laanpere M, Altmae S, Stavreus-Evers A, Nilsson TK, Yngve A, Salumets A. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev. 2010;68(2):99–113.

    Article  Google Scholar 

  15. Ikeda S, Sugimoto M, Kume S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev. 2012;58(1):91–7.

    Article  Google Scholar 

  16. Ikeda S, Sugimoto M, Kume S. The RPMI-1640 vitamin mixture promotes bovine blastocyst development in vitro and downregulates gene expression of TXNIP with epigenetic modification of associated histones. J Dev Orig Health Dis. 2018;9(1):87–94.

    Article  CAS  Google Scholar 

  17. Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, Peelman LJ. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol. 2005;5:27.

    Article  Google Scholar 

  18. Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A. 2014;111(11):4139–44.

    Article  CAS  Google Scholar 

  19. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

    Article  Google Scholar 

  20. Ikeda S, Sugimoto M, Kume S. Lipofection of siRNA into bovine 8-16-cell stage embryos using zona removal and the well-of-the-well culture system. J Reprod Dev. 2018;64(2):199–202.

    Article  CAS  Google Scholar 

  21. Vajta G, Peura TT, Holm P, Paldi A, Greve T, Trounson AO, et al. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev. 2000;55(3):256–64.

    Article  CAS  Google Scholar 

  22. Kudo M, Ikeda S, Sugimoto M, Kume S. Methionine-dependent histone methylation at developmentally important gene loci in mouse preimplantation embryos. J Nutr Biochem. 2015;26(12):1664–9.

    Article  CAS  Google Scholar 

  23. Datta TK, Rajput SK, Wee G, Lee K, Folger JK, Smith GW. Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development. Reproduction. 2015;149(2):203–12.

    Article  CAS  Google Scholar 

  24. Koyama H, Ikeda S, Sugimoto M, Kume S. Effects of folic acid on the development and oxidative stress of mouse embryos exposed to heat stress. Reprod Domest Anim. 2012;47(6):921–7.

    Article  CAS  Google Scholar 

  25. Ikeda S, Namekawa T, Sugimoto M, Kume S. Expression of methylation pathway enzymes in bovine oocytes and preimplantation embryos. J Exp Zool A Ecol Genet Physiol. 2010;313(3):129–36.

    PubMed  Google Scholar 

  26. Ikeda S, Kawahara-Miki R, Iwata H, Sugimoto M, Kume S. Role of methionine adenosyltransferase 2A in bovine preimplantation development and its associated genomic regions. Sci Rep. 2017;7(1):3800.

    Article  Google Scholar 

  27. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3.

    Article  CAS  Google Scholar 

  28. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044–51.

    Article  Google Scholar 

  29. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.

    Article  CAS  Google Scholar 

  30. Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93(1):7–9.

    Article  CAS  Google Scholar 

  31. Christensen B, Frosst P, Lussier-Cacan S, Selhub J, Goyette P, Rosenblatt DS, et al. Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol. 1997;17(3):569–73.

    Article  CAS  Google Scholar 

  32. Steele W, Allegrucci C, Singh R, Lucas E, Priddle H, Denning C, et al. Human embryonic stem cell methyl cycle enzyme expression: modelling epigenetic programming in assisted reproduction? Reprod BioMed Online. 2005;10(6):755–66.

    Article  CAS  Google Scholar 

  33. Servy EJ, Jacquesson-Fournols L, Cohen M, Menezo YJR. MTHFR isoform carriers. 5-MTHF (5-methyl tetrahydrofolate) vs folic acid: a key to pregnancy outcome: a case series. J Assist Reprod Genet. 2018;35(8):1431–5.

    Article  Google Scholar 

  34. Menezo Y, Clement P, Dale B. DNA methylation patterns in the early human embryo and the epigenetic/imprinting problems: a plea for a more careful approach to human assisted reproductive technology (ART). Int J Mol Sci. 2019;20(6):1342.

    Article  CAS  Google Scholar 

  35. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors deeply thank the staff at the Kyoto-Meat-Market for allowing us access to bovine ovaries.

Funding

This work was supported in part by the Kieikai Research Foundation and JSPS KAKENHI Grant Number 15K07779 and 19H03104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntaro Ikeda.

Ethics declarations

This study was approved by the Animal Research Committee of Kyoto University (Permit Numbers 29-10, 30-10, and 31-10).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(A) Expression levels of MTHFR mRNA based on RT-qPCR with normalization by the geometric mean of three traditional housekeeping genes (GAPDH, SDHA, and YWHAZ), that has been recommended by a previous study [17]. Data are expressed as mean ± standard error relative to the GV stage. Data were obtained from two independent sample sets containing GV oocytes (GV), MII oocytes (MII), 1-cell- (1C), 2-cell- (2C), 8- to 16-cell- (8-16C), morula- (MO), and blastocyst- (BL) stage embryos. (B) Expression levels of mRNA of the three housekeeping genes calculated from Ct values as in the Fig. 2A. (PPTX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishitani, H., Ikeda, S., Egashira, K. et al. Embryonic MTHFR contributes to blastocyst development. J Assist Reprod Genet 37, 1807–1814 (2020). https://doi.org/10.1007/s10815-020-01898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01898-0

Keywords

Navigation