Skip to main content
Log in

Need for choosing the ideal pH value for IVF culture media

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Monitoring the pH of IVF culture media is a good practice, but the required pH levels have been “arbitrarily” set. Assisted reproductive technology centers around the world are spending time and money on pH monitoring without any consensus to date. The objective of this narrative review was to evaluate the importance of pH monitoring during IVF, discover how the oocyte and embryo regulate their intracellular pH and try to determine the optimal pH to be applied.

Methods

A narrative literature review was performed on publications in the PubMed database reporting on the impact of pH on cellular function, oocyte and embryo development, IVF outcomes and pathophysiology, or on physiological pH in the female reproductive tract.

Results

Intracellular pH regulates many cellular processes such as meiotic spindle stability of the oocyte, cell division and differentiation, embryo enzymatic activities, and blastocoel formation. The internal pH of the human embryo is maintained by regulatory mechanisms (mainly Na+/H+ and HCO3/Cl exchangers) that can be exceeded, particularly in the oocyte and early-stage embryos. The opinion that the optimal pH for embryo culture is physiological pH is not correct since several physicochemical parameters specific to IVF culture conditions (temperature, medium composition, duration of culture, or implication of CO2) can modify the intracellular pH of the embryo and change its needs and adaptability.

Conclusions

Because correct and stable extracellular pH is essential to embryo health and development, monitoring pH is imperative. However, there is a lack of clinical data on choosing the ideal pH for human IVF culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Geyter C, Calhaz-Jorge C, Kupka MS, Wyns C, Mocanu E, Motrenko T, et al. ART in Europe, 2014: results generated from European registries by ESHRE: The European IVF-monitoring consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod. 2018;33(9):1586–601. https://doi.org/10.1093/humrep/dey242.

    Article  PubMed  Google Scholar 

  2. Dumoulin JC, Land JA, Van Montfoort AP, Nelissen EC, Coonen E, Derhaag JG, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25(3):605–12. https://doi.org/10.1093/humrep/dep456.

    Article  PubMed  Google Scholar 

  3. Nelissen EC, Van Montfoort AP, Coonen E, Derhaag JG, Geraedts JP, Smits LJ, et al. Further evidence that culture media affect perinatal outcome: findings after transfer of fresh and cryopreserved embryos. Hum Reprod. 2012;27(7):1966–76. https://doi.org/10.1093/humrep/des145.

    Article  PubMed  Google Scholar 

  4. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99(3):632–41. https://doi.org/10.1016/j.fertnstert.2012.12.044.

    Article  CAS  PubMed  Google Scholar 

  5. Bouillon C, Leandri R, Desch L, Ernst A, Bruno C, Cerf C et al. Does embryo culture medium influence the health and development of children born after in vitro fertilization? PLoS One 2016;11(3):e0150857. doi:https://doi.org/10.1371/journal.pone.0150857.

  6. Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64(6):1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roos A, Boron WF. Intracellular pH. Physiol Rev. 1981;61(2):296–434. https://doi.org/10.1152/physrev.1981.61.2.296.

    Article  CAS  PubMed  Google Scholar 

  8. Busa WB. Mechanisms and consequences of pH-mediated cell regulation. Annu Rev Physiol. 1986;48:389–402. https://doi.org/10.1146/annurev.ph.48.030186.002133.

    Article  CAS  PubMed  Google Scholar 

  9. Swearman H, Koustas G, Knight E, Liperis G, Grupen C, Sjoblom C. pH: the silent variable significantly impacting meiotic spindle assembly in mouse oocytes. Reprod BioMed Online. 2018;37(3):279–90. https://doi.org/10.1016/j.rbmo.2018.06.022.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng JM, Li J, Tang JX, Chen SR, Deng SL, Jin C, et al. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice. Cell Cycle. 2016;15(18):2454–63. https://doi.org/10.1080/15384101.2016.1201255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lane M, Gardner DK. Regulation of ionic homeostasis by mammalian embryos. Semin Reprod Med. 2000;18(2):195–204. https://doi.org/10.1055/s-2000-12558.

    Article  CAS  PubMed  Google Scholar 

  12. Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.

    Article  CAS  PubMed  Google Scholar 

  13. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50(4):434–42. https://doi.org/10.1002/(SICI)1098-2795(199808)50:4<434::AID-MRD7>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  14. Barr KJ, Garrill A, Jones DH, Orlowski J, Kidder GM. Contributions of Na+/H+ exchanger isoforms to preimplantation development of the mouse. Mol Reprod Dev. 1998;50(2):146–53. https://doi.org/10.1002/(SICI)1098-2795(199806)50:2<146::AID-MRD4>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  15. Watson AJ, Barcroft LC. Regulation of blastocyst formation. Front Biosci. 2001;6:D708–30. https://doi.org/10.2741/watson.

    Article  CAS  PubMed  Google Scholar 

  16. Phillips KP, Leveille MC, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15(4):896–904.

    Article  CAS  PubMed  Google Scholar 

  17. Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401. https://doi.org/10.1002/(SICI)1098-2795(199912)54:4<396::AID-MRD10>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Chauvet PJ, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.

    Article  CAS  PubMed  Google Scholar 

  19. Lane M, Baltz JM, Bavister BD. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52. https://doi.org/10.1006/dbio.1999.9198.

    Article  CAS  PubMed  Google Scholar 

  20. Lane M, Baltz JM, Bavister BD. Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol Reprod. 1998;59(6):1483–90.

    Article  CAS  PubMed  Google Scholar 

  21. Siyanov V, Baltz JM. NHE1 is the sodium-hydrogen exchanger active in acute intracellular pH regulation in preimplantation mouse embryos. Biol Reprod. 2013;88(6):157. https://doi.org/10.1095/biolreprod.113.109033.

    Article  PubMed  Google Scholar 

  22. Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO(3)(−)) transporters. Mol Asp Med. 2013;34(2–3):159–82. https://doi.org/10.1016/j.mam.2012.10.008.

    Article  CAS  Google Scholar 

  23. Dagilgan S, Dundar-Yenilmez E, Tuli A, Urunsak IF, Erdogan S. Evaluation of intracellular pH regulation and alkalosis defense mechanisms in preimplantation embryos. Theriogenology. 2015;83(6):1075–84. https://doi.org/10.1016/j.theriogenology.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  24. Swain JE. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update. 2012;18(3):333–9. https://doi.org/10.1093/humupd/dmr053.

    Article  CAS  PubMed  Google Scholar 

  25. Erdogan S, FitzHarris G, Tartia AP, Baltz JM. Mechanisms regulating intracellular pH are activated during growth of the mouse oocyte coincident with acquisition of meiotic competence. Dev Biol. 2005;286(1):352–60. https://doi.org/10.1016/j.ydbio.2005.08.009.

    Article  CAS  PubMed  Google Scholar 

  26. FitzHarris G, Siyanov V, Baltz JM. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development. 2007;134(23):4283–95. https://doi.org/10.1242/dev.005272.

    Article  CAS  PubMed  Google Scholar 

  27. Phillips KP, Petrunewich MA, Collins JL, Baltz JM. The intracellular pH-regulatory HCO3-/cl- exchanger in the mouse oocyte is inactivated during first meiotic metaphase and reactivated after egg activation via the MAP kinase pathway. Mol Biol Cell. 2002;13(11):3800–10. https://doi.org/10.1091/mbc.e02-04-0242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phillips KP, Baltz JM. Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. Dev Biol. 1999;208(2):392–405. https://doi.org/10.1006/dbio.1999.9199.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou C, Tiberi M, Liang B, Alper SL, Baltz JM. HCO3(−)/Cl(−) exchange inactivation and reactivation during mouse oocyte meiosis correlates with MEK/MAPK-regulated Ae2 plasma membrane localization. PLoS One. 2009;4(10):e7417. https://doi.org/10.1371/journal.pone.0007417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erdogan S, Cetinkaya A, Tuli A, Yilmaz ED, Dogan A. Changes in the activity of defense mechanisms against induced acidosis during meiotic maturation in mouse oocytes. Theriogenology. 2011;75(6):1057–66. https://doi.org/10.1016/j.theriogenology.2010.11.014.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou C, Fitzharris G, Alper SL, Baltz JM. Na+/H+ exchange is inactivated during mouse oocyte meiosis, facilitating glycine accumulation that maintains embryo cell volume. J Cell Physiol. 2013;228(10):2042–53. https://doi.org/10.1002/jcp.24370.

    Article  CAS  PubMed  Google Scholar 

  32. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod. 1998;13(12):3441–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev. 2005;17(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  34. Zander-Fox DL, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod BioMed Online. 2010;21(2):219–29. https://doi.org/10.1016/j.rbmo.2010.05.001.

    Article  PubMed  Google Scholar 

  35. Steeves CL, Lane M, Bavister BD, Phillips KP, Baltz JM. Differences in intracellular pH regulation by Na(+)/H(+) antiporter among two-cell mouse embryos derived from females of different strains. Biol Reprod. 2001;65(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  36. Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod BioMed Online. 2010;21(1):6–16. https://doi.org/10.1016/j.rbmo.2010.03.012.

    Article  PubMed  Google Scholar 

  37. Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Phys. 1996;271(5 Pt 1):C1512–20. https://doi.org/10.1152/ajpcell.1996.271.5.C1512.

    Article  CAS  Google Scholar 

  38. Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update. 2018;24(1):15–34. https://doi.org/10.1093/humupd/dmx028.

    Article  PubMed  Google Scholar 

  39. Hugentobler S, Morris DG, Kane MT, Sreenan JM. In situ oviduct and uterine pH in cattle. Theriogenology. 2004;61(7–8):1419–27. https://doi.org/10.1016/j.theriogenology.2003.08.008.

    Article  CAS  PubMed  Google Scholar 

  40. Nichol R, Hunter RH, Cooke GM. Oviduct fluid pH in intact and unilaterally ovariectomized pigs. Can J Physiol Pharmacol. 1997;75(9):1069–74.

    Article  CAS  PubMed  Google Scholar 

  41. Maas DH, Stein B, Metzger H. PO2 and pH measurements within the rabbit oviduct following tubal microsurgery: reanastomosis of previously dissected tubes. Adv Exp Med Biol. 1984;169:561–70.

    Article  CAS  PubMed  Google Scholar 

  42. David A, Serr DM, Czernobilsky B. Chemical composition of human oviduct fluid. Fertil Steril. 1973;24(6):435–9.

    Article  CAS  PubMed  Google Scholar 

  43. Imoedemhe DA, Chan RC, Ramadan IA, Sigue AB. Changes in follicular fluid gas and pH during carbon dioxide pneumoperitoneum for laparoscopic aspiration and their effect on human oocyte fertilizability. Fertil Steril. 1993;59(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  44. Mather EC. “In vivo” uterine lumen pH values of the bovine. Theriogenology. 1975;3(3):113–9.

    Article  CAS  PubMed  Google Scholar 

  45. Iritani A, Nishikawa Y, Gomes WR, VanDemark NL. Secretion rates and chemical composition of oviduct and uterine fluids in rabbits. J Anim Sci. 1971;33(4):829–35.

    Article  CAS  PubMed  Google Scholar 

  46. Bates RG, Covington AK. Behavior of the glass electrode and other pH-responsive electrodes in biological media. Ann N Y Acad Sci. 1968;148(1):67–80. https://doi.org/10.1111/j.1749-6632.1968.tb20341.x.

    Article  CAS  PubMed  Google Scholar 

  47. Tarahomi M, de Melker AA, van Wely M, Hamer G, Repping S, Mastenbroek S. pH stability of human preimplantation embryo culture media: effects of culture and batches. Reprod BioMed Online. 2018;37(4):409–14. https://doi.org/10.1016/j.rbmo.2018.08.011.

    Article  CAS  PubMed  Google Scholar 

  48. Higdon HL 3rd, Blackhurst DW, Boone WR. Incubator management in an assisted reproductive technology laboratory. Fertil Steril. 2008;89(3):703–10. https://doi.org/10.1016/j.fertnstert.2007.03.040.

    Article  PubMed  Google Scholar 

  49. Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril. 2011;95(4):1291–4. https://doi.org/10.1016/j.fertnstert.2010.10.018.

    Article  CAS  PubMed  Google Scholar 

  50. Swain J. Embryo culture and pH. Fertil Steril. 2011;95(8):e67; author reply e8. doi:https://doi.org/10.1016/j.fertnstert.2011.04.024.

  51. Carney EW, Bavister BD. Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod. 1987;36(5):1155–63. https://doi.org/10.1095/biolreprod36.5.1155.

    Article  CAS  PubMed  Google Scholar 

  52. Lane M, Gardner DK. Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol. 2007;21(1):83–100. https://doi.org/10.1016/j.bpobgyn.2006.09.009.

    Article  PubMed  Google Scholar 

  53. Gardner DK, Kelley RL. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J Dev Orig Health Dis. 2017;8(4):418–35. https://doi.org/10.1017/S2040174417000368.

    Article  CAS  PubMed  Google Scholar 

  54. Hong KH, Lee H, Forman EJ, Upham KM, Scott RT Jr. Examining the temperature of embryo culture in in vitro fertilization: a randomized controlled trial comparing traditional core temperature (37 degrees C) to a more physiologic, cooler temperature (36 degrees C). Fertil Steril. 2014;102(3):767–73. https://doi.org/10.1016/j.fertnstert.2014.06.009.

    Article  PubMed  Google Scholar 

  55. Fujiwara M, Takahashi K, Izuno M, Duan YR, Kazono M, Kimura F, et al. Effect of micro-environment maintenance on embryo culture after in-vitro fertilization: comparison of top-load mini incubator and conventional front-load incubator. J Assist Reprod Genet. 2007;24(1):5–9. https://doi.org/10.1007/s10815-006-9088-3.

    Article  PubMed  Google Scholar 

  56. Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7. https://doi.org/10.1093/humrep/den368.

    Article  PubMed  Google Scholar 

  57. Gomes Sobrinho DB, Oliveira JB, Petersen CG, Mauri AL, Silva LF, Massaro FC, et al. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143. https://doi.org/10.1186/1477-7827-9-143.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moessner J, Dodson WC. The quality of human embryo growth is improved when embryos are cultured in groups rather than separately. Fertil Steril. 1995;64(5):1034–5. https://doi.org/10.1016/s0015-0282(16)57925-4.

    Article  CAS  PubMed  Google Scholar 

  59. Ebner T, Shebl O, Moser M, Mayer RB, Arzt W, Tews G. Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth. Reprod BioMed Online. 2010;21(6):762–8. https://doi.org/10.1016/j.rbmo.2010.06.038.

    Article  CAS  PubMed  Google Scholar 

  60. Swain JE, Cabrera L, Xu X, Smith GD. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development. Reprod BioMed Online. 2012;24(2):142–7. https://doi.org/10.1016/j.rbmo.2011.10.008.

    Article  CAS  PubMed  Google Scholar 

  61. Swain JE. Controversies in ART: considerations and risks for uninterrupted embryo culture. Reprod BioMed Online. 2019;39(1):19–26. https://doi.org/10.1016/j.rbmo.2019.02.009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gatimel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatimel, N., Moreau, J., Parinaud, J. et al. Need for choosing the ideal pH value for IVF culture media. J Assist Reprod Genet 37, 1019–1028 (2020). https://doi.org/10.1007/s10815-020-01726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01726-5

Keywords

Navigation