Skip to main content
Log in

Variations in chromosomal aneuploidy rates in IVF blastocysts and early spontaneous abortion chorionic villi

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To compare chromosomal aberrations and aneuploidy features in (i) blastocysts following intracytoplasmic sperm injection (ICSI) and trophectoderm (TE) biopsy using preimplantation genetic screening (PGS) and (ii) early spontaneous abortion chorionic villus biopsies (SA-CVB) using single-nucleotide polymorphism (SNP) array detection.

Methods

We retrospectively reviewed the data for 1014 TEs from 220 PGS cycles and 1724 SA-CVBs originating from naturally pregnant couples and patients undergoing assisted reproductive technology (ART) during 2017 to 2018. SNP array was applied in both PGS and SA-CVBs detection. Aberrations were defined, and the frequency and ratio of each chromosome aberration were compared between the two groups.

Results

There were more abnormalities in TEs in the form of complex chromosome aneuploidies and monosomies, while SA-CVBs had more trisomies, sex chromosome abnormalities, and polyploidies. In both groups, chromosomal aneuploidies (including monosomies and trisomies) were confined to chromosomes 14, 15, 16, 18, 21, and 22, but showed varying distributions across the groups. Aneuploidy of chromosome 22 was most frequent in TEs, whereas that of chromosome 16 predominated in SA-CVBs. Among the sex chromosome abnormalities, X monosomies were significantly more prevalent in SA-CVBs.

Conclusions

Chromosomal aberrations and aneuploidy manifested specific characteristics that differed between TEs and SA-CVBs, which indicates that distinct chromosomal abnormalities can affect certain developmental stages of embryos. Further analysis is needed to explore the chromosomal mechanisms affecting embryo development and implantation. Such information will help clinical assessments in prenatal diagnosis and reduce the incidence of genetically abnormal fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lejeune J, Gautier M, Turpin R. Study of somatic chromosomes from 9 mongoloid children. C R Hebd Seances Acad Sci. 1959;248(11):1721–2.

    CAS  PubMed  Google Scholar 

  2. Jacobs PA, Baikie AG, Court BW, Strong JA. The somatic chromosomes in mongolism. Lancet. 1959;1(7075):710.

    Article  CAS  Google Scholar 

  3. Rodriguez PJ, Lee J, Whitehouse M, Moschini RM, Knopman J, Duke M, et al. Embryo selection versus natural selection: how do outcomes of comprehensive chromosome screening of blastocysts compare with the analysis of products of conception from early pregnancy loss (dilation and curettage) among an assisted reproductive technology population? Fertil Steril. 2015;104(6):1460–6.

    Article  Google Scholar 

  4. Rubio C, Rodrigo L, Mercader A, Mateu E, Buendia P, Pehlivan T, et al. Impact of chromosomal abnormalities on preimplantation embryo development. Prenat Diagn. 2007;27(8):748–56.

    Article  Google Scholar 

  5. Mantzouratou A, Mania A, Fragouli E, Xanthopoulou L, Tashkandi S, Fordham K, et al. Variable aneuploidy mechanisms in embryos from couples with poor reproductive histories undergoing preimplantation genetic screening. Hum Reprod. 2007;22(7):1844–53.

    Article  CAS  Google Scholar 

  6. Spinella F, Fiorentino F, Biricik A, Bono S, Ruberti A, Cotronea E, et al. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil Steril. 2018;109(1):77–83.

    Article  Google Scholar 

  7. Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23(6):706–22.

    Article  CAS  Google Scholar 

  8. Guo LY, Zhai M, Wang SS, Zhang Y. Meta-analysis of risk factors related to the induction of embryo damage. CJCHC FEB. 2016;24(2):166–9.

    Google Scholar 

  9. Christianson RE, Sherman SL, Torfs CP. Maternal meiosis II nondisjunction in trisomy 21 is associated with maternal low socioeconomic status. Genet Med. 2004;6(6):487–94.

    Article  Google Scholar 

  10. Hunter JE, Allen EG, Shin M, Bean LJ, Correa A, Druschel C, et al. The association of low socioeconomic status and the risk of having a child with down syndrome: a report from the National Down Syndrome Project. Genet Med. 2013;15(9):698–705.

    Article  Google Scholar 

  11. Chris MJ, Servi JC, Joseph CD, Marion D, Hubert JS, Bertien HC, et al. SNP array-based copy number and genotype analyses for preimplantation genetic diagnosis of human unbalanced translocations. Eur J Hum Genet. 2012;20(9):938–44.

    Article  Google Scholar 

  12. Elias MD, Jacques B, François A, Douglas W, Jo-Ann B, Carla C, et al. Technical update: preimplantation genetic diagnosis and screening. J Obstet Gynaecol Can2015;37(5):451–463.

  13. Wang Y, Cheng Q, Meng L, Luo C, Hu H, Zhang J, et al. Clinical application of SNP array analysis in first-trimester pregnancy loss: a prospective study. Clin Genet. 2017;91(6):849–58.

    Article  CAS  Google Scholar 

  14. Huang J, Li R, Lian Y, Chen L, Shi X, Qiao J, et al. Vitrified/warmed single blastocyst transfer in preimplantation genetic diagnosis/preimplantation genetic screening cycles. Int J Clin Exp Med. 2015;8(11):21605–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Doubilet PM, Benson CB, Bourne T, Blaivas M. Diagnostic criteria for nonviable pregnancy early in the first trimester. N Engl J Med. 2013;369(15):1443–51.

    Article  CAS  Google Scholar 

  16. Huang J, Zhao N, Wang X, Qiao J, Liu P. Chromosomal characteristics at cleavage and blastocyst stages from the same embryos. J Assist Reprod Genet. 2015;32(5):781–7.

    Article  Google Scholar 

  17. Taranissi M, El-Toukhy T, Gorgy A. Influence of maternal age on the outcome of PGD for aneuploidy screening in patients with recurrent implantation failure. Reprod BioMed Online. 2005;10(5):628–32.

    Article  Google Scholar 

  18. Findikli N, Kahraman S, Saglam Y, Beyazyurek C, Sertyel S, Karlikaya G, et al. Embryo aneuploidy screening for repeated implantation failure and unexplained recurrent miscarriage. Reprod BioMed Online. 2006;13(1):38–46.

    Article  CAS  Google Scholar 

  19. Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, et al. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132(9):1001–13.

    Article  Google Scholar 

  20. Dai XY, Zhou L, Xie JS. Chromosome abnormality analysis of 7036 chorionic villi in spontaneous miscarriage cases by multiplex ligation-dependent probe amplification. Chin J Lab Med. 2017;40(8):598–601.

    Google Scholar 

  21. McCallie BR, Parks JC, Patton AL, Griffin DK, Schoolcraft WB, Katz-Jaffe MG, et al. Hypomethylation and genetic instability in monosomy blastocysts may contribute to decreased implantation potential. PLoS One. 2016;11(7):e159507.

    Article  Google Scholar 

  22. Halloran KH, Breg WR. Mahoney MJ.21 monosomy in a retarded female infant. J Med Genet. 1974;11(4):386–9.

    Article  CAS  Google Scholar 

  23. Licciardi F, Lhakhang T, Kramer YG, Zhang Y, Heguy A, Tsirigos A. Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles. Nature. 2018;8(1):14906.

    Google Scholar 

  24. Chou ST, Opalinska JB, Yao Y, Fernandes MA, Kalota A, Brooks JS, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. BLOOD. 2008;112(12):4503–6.

    Article  CAS  Google Scholar 

  25. Munne S, Bahce M, Sandalinas M, Escudero T, Marquez C, Velilla E, et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod BioMed Online. 2004;8(1):81–90.

    Article  Google Scholar 

  26. Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133(2–4):149–59.

    Article  CAS  Google Scholar 

  27. Hassold T, Chen N, Funkhouser J, Jooss T, Manuel B, Matsuura J, et al. A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet. 1980;44(2):151–78.

    Article  CAS  Google Scholar 

  28. Du Y, Chen L, Lin J, Zhu J, Zhang N, Qiu X, et al. Chromosomal karyotype in chorionic villi of recurrent spontaneous abortion patients. Biosci Trends. 2018;12(1):32–9.

    Article  CAS  Google Scholar 

  29. Emanuel BS, Zackai EH, Aronson MM, Mellman WJ, Moorhead PS. Abnormal chromosome 22 and recurrence of trisomy-22 syndrome. J Med Genet. 1976;13(6):501–6.

    Article  CAS  Google Scholar 

  30. Hall HE, Surti U, Hoffner L, Shirley S, Feingold E, Hassold T. The origin of trisomy 22: evidence for acrocentric chromosome-specific patterns of nondisjunction. Am J Med Genet A. 2007;143A:2249–55.

    Article  Google Scholar 

  31. Hassold TJ, Jacobs PA. Trisomy in man. Annu Rev Genet. 1984;18:69–97.

    Article  CAS  Google Scholar 

  32. Micale M, Insko J, Ebrahim SA, Adeyinka A, Runke C, Van Dyke DL. Double trisomy revisited--a multicenter experience. Prenat Diagn. 2010;30(2):173–6.

    Article  Google Scholar 

  33. Babariya D, Fragouli E, Alfarawati S, Spath K, Wells D. Hum Reprod. 2017;32(12):2549–60.

    Article  CAS  Google Scholar 

  34. McWeeney DT, Munne S, Miller RC, Cekleniak NA, Contag SA, Wax JR, et al. Pregnancy complicated by triploidy: a comparison of the three karyotypes. Am J Perinatol. 2009;26(9):641–5.

    Article  Google Scholar 

  35. Sundvall L, Lund H, Niemann I, Jensen UB, Bolund L, Sunde L. Tetraploidy in hydatidiform moles. Hum Reprod. 2013;28(7):2010–20.

    Article  CAS  Google Scholar 

  36. Mathur A, Stekol L, Schatz D, NK ML, Scott ML, Lippe B. The parental origin of the single X chromosome in Turner syndrome: lack of correlation with parental age or clinical phenotype. Am J Hum Genet. 1991;48(4):682–6.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by 2018YFC1003104 “National Key R&D Program of China” and BYSY2018015 “Clinical Key Program of Peking University Third Hospital”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1573 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y., Zhao, N. et al. Variations in chromosomal aneuploidy rates in IVF blastocysts and early spontaneous abortion chorionic villi. J Assist Reprod Genet 37, 527–537 (2020). https://doi.org/10.1007/s10815-019-01682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01682-9

Keywords

Navigation