Skip to main content
Log in

Evaluating the application value of NGS-based PGT-A by screening cryopreserved MDA products of embryos from PGT-M cycles with known transfer outcomes

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To determine the application value of next-generation sequencing (NGS)-based preimplantation genetic testing for aneuploidies (PGT-A).

Methods

We conducted a retrospective case–control study on a cohort of frozen-thawed embryo transfer (FET) cycles following preimplantation genetic testing for monogenic disorders (PGT-M) between 2014 and 2017. Cycles that produced live births or early miscarriages were divided into live birth group (n = 76) or miscarriage group (n = 19), respectively. The NGS-based aneuploidy screening was performed on the multiple displacement amplification (MDA) products of the embryonic trophectoderm biopsy samples that were cryopreserved following PGT-M.

Results

In the live birth group, 75% (57/76) embryos were euploid and 14.5% (11/76) were aneuploid. The remaining 10.5% (8/76) embryos were NGS-classified mosaic with the high- (≥ 50%) and low-level (< 50%) mosaicism rates at 7.9% (6/76) and 2.6% (2/76), respectively. In the miscarriage group, only 23.5% (4/17) embryos were aneuploid, while 58.8% (10/17) were euploid and 17.6% (3/17) were NGS-classified mosaic with the high- and low-level mosaicism rates at 11.8% (2/17) and 5.9% (1/17), respectively. For live birth and miscarriage groups, the transferable rate was 82.9% (63/76) and 70.6% (12/17), respectively, whereas the untransferable rate was 17.1% (13/76) and 29.4% (5/17), respectively.

Conclusion

The application of NGS-based PGT-A remains questionable, as it may cause at least one in six embryos with reproductive potential to be discarded and prevent miscarriage in less than one in three embryos in single-gene disease carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verlinsky Y, Cieslak J, Freidine M, Ivakhnenko V, Wolf G, Kovalinskaya L, et al. Pregnancies following pre-conception diagnosis of common aneuploidies by fluorescent in-situ hybridization. Hum Reprod. 1995;10:1923–7. https://doi.org/10.1093/oxfordjournals.humrep.a136207.

    Article  PubMed  CAS  Google Scholar 

  2. Hardarson T, Hanson C, Lundin K, Hillensjö T, Nilsson L, Stevic J, et al. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod. 2008;23:2806–12. https://doi.org/10.1093/humrep/den217.

    Article  PubMed  CAS  Google Scholar 

  3. Harton GL, De Rycke M, Fiorentino F, Moutou C, SenGupta S, Traeger-Synodinos J, et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26:33–40. https://doi.org/10.1093/humrep/deq231.

    Article  PubMed  CAS  Google Scholar 

  4. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357:9–17. https://doi.org/10.1056/NEJMoa067744.

    Article  PubMed  CAS  Google Scholar 

  5. Practice Committee of Society for Assisted Reproductive Technology, Practice Committee of American Society for Reproductive Medicine. Preimplantation genetic testing: a Practice Committee opinion. Fertil Steril 2008;90;Suppl:S136–43. https://doi.org/10.1016/j.fertnstert.2008.08.062

  6. Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100:100-7.e1. https://doi.org/10.1016/j.fertnstert.2013.02.056.

    Article  PubMed  Google Scholar 

  7. Gleicher N, Barad DH. A review of, and commentary on, the ongoing second clinical introduction of preimplantation genetic screening (PGS) to routine IVF practice. J Assist Reprod Genet. 2012;29:1159–66. https://doi.org/10.1007/s10815-012-9871-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scott RT Jr, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100:697–703. https://doi.org/10.1016/j.fertnstert.2013.04.035.

    Article  PubMed  Google Scholar 

  9. Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5:24. https://doi.org/10.1186/1755-8166-5-24.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92:890–6. https://doi.org/10.1016/j.fertnstert.2008.07.1761.

    Article  PubMed  CAS  Google Scholar 

  11. Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165. https://doi.org/10.1038/ncomms11165.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373:2089–90. https://doi.org/10.1056/NEJMc1500421.

    Article  PubMed  Google Scholar 

  13. Spinella F, Fiorentino F, Biricik A, Bono S, Ruberti A, Cotroneo E, et al. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil Steril. 2018;109:77–83. https://doi.org/10.1016/j.fertnstert.2017.09.025.

    Article  PubMed  Google Scholar 

  14. Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16:944–9. https://doi.org/10.1093/molehr/gaq062.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Liu J, Wang W, Sun X, Liu L, Jin H, Li M, et al. DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal age are aneuploid and mosaic. Biol Reprod. 2012;87:148. https://doi.org/10.1095/biolreprod.112.103192.

    Article  PubMed  CAS  Google Scholar 

  16. Orvieto R. Re-analysis of aneuploidy blastocysts with an inner cell mass and different regional trophectoderm cells. J Assist Reprod Genet. 2017;34:827. https://doi.org/10.1007/s10815-017-0914-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Popovic M, Dheedene A, Christodoulou C, Taelman J, Dhaenens L, Van Nieuwerburgh F, et al. Chromosomal mosaicism in human blastocysts: the ultimate challenge of preimplantation genetic testing? Hum Reprod. 2018;33:1342–54. https://doi.org/10.1093/humrep/dey106.

    Article  PubMed  CAS  Google Scholar 

  18. Gleicher N, Vidali A, Braverman J, Kushnir VA, Barad DH, Hudson C, et al. Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod Biol Endocrinol. 2016;14:54. https://doi.org/10.1186/s12958-016-0193-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol. 2017;15:33. https://doi.org/10.1186/s12958-017-0251-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, et al. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics. 2006;7:216. https://doi.org/10.1186/1471-2164-7-216.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Sabina J, Leamon JH. Bias in whole genome amplification: causes and considerations. Methods Mol Biol. 2015;1347:15–41. https://doi.org/10.1007/978-1-4939-2990-0_2.

    Article  PubMed  CAS  Google Scholar 

  22. Homer HA. Preimplantation genetic testing for aneuploidy (PGT-A): the biology, the technology and the clinical outcomes. Aust N Z J Obstet Gynaecol. 2019;59:317–24. https://doi.org/10.1111/ajo.12960.

    Article  PubMed  Google Scholar 

  23. Maxwell SM, Colls P, Hodes-Wertz B, McCulloh DH, McCaffrey C, Wells D, et al. Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing. Fertil Steril. 2016;106(1414):1414-1419.e5. https://doi.org/10.1016/j.fertnstert.2016.08.017.

    Article  PubMed  CAS  Google Scholar 

  24. Cram DS, Leigh D, Handyside A, Rechitsky L, Xu K, Harton G, et al. PGDIS position statement on the transfer of mosaic embryos 2019. Reprod Biomed Online. 2019;39(1;Suppl 1):e1–4. https://doi.org/10.1016/j.rbmo.2019.06.012.

    Article  PubMed  Google Scholar 

  25. Chen D, Shen X, Wu C, Xu Y, Ding C, Zhang G, et al. Eleven healthy live births: a result of simultaneous preimplantation genetic testing of α- and β-double thalassemia and aneuploidy screening. J Assist Reprod Genet. 2020;37:549–57. https://doi.org/10.1007/s10815-020-01732-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fu Y, Shen X, Chen D, Wang Z, Zhou C. Multiple displacement amplification as the first step can increase the diagnostic efficiency of preimplantation genetic testing for monogenic disease for β-thalassemia. J Obstet Gynaecol Res. 2019;45:1515–21. https://doi.org/10.1111/jog.14003.

    Article  PubMed  CAS  Google Scholar 

  27. Shen X, Xu Y, Zhong Y, Zhou C, Zeng Y, Zhuang G, et al. Preimplantation genetic diagnosis for α-and β-double thalassemia. J Assist Reprod Genet. 2011;28:957–64. https://doi.org/10.1007/s10815-011-9598-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marin D, Zimmerman R, Tao X, Zhan Y, Scott RT Jr, Treff NR. Validation of a targeted next generation sequencing-based comprehensive chromosome screening platform for detection of triploidy in human blastocysts. Reprod Biomed Online. 2018;36:388–95. https://doi.org/10.1016/j.rbmo.2017.12.015.

    Article  PubMed  CAS  Google Scholar 

  29. Tiegs AW, Tao X, Zhan Y, Whitehead C, Kim J, Hanson B, et al. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing-based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil Steril. 2021;115:627–37. https://doi.org/10.1016/j.fertnstert.2020.07.052.

    Article  PubMed  CAS  Google Scholar 

  30. Lin PY, Lee CI, Cheng EH, Huang CC, Lee TH, Shih HH, et al. Clinical outcomes of single mosaic embryo transfer: high-level or low-level mosaic embryo, does it matter? J Clin Med. 2020;9(6):1695. https://doi.org/10.3390/jcm9061695.

    Article  PubMed Central  Google Scholar 

  31. Friedenthal J, Maxwell SM, Munné S, Kramer Y, McCulloh DH, McCaffrey C, et al. Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil Steril. 2018;109:627–32. https://doi.org/10.1016/j.fertnstert.2017.12.017.

    Article  PubMed  CAS  Google Scholar 

  32. Niu W, Wang L, Xu J, Li Y, Shi H, Li G, et al. Improved clinical outcomes of preimplantation genetic testing for aneuploidy using MALBAC-NGS compared with MDA-SNP array. BMC Pregnancy Childbirth. 2020;20:388. https://doi.org/10.1186/s12884-020-03082-9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Xiao M, Lei CX, Xi YP, Lu YL, Wu JP, Li XY, et al. Next-generation sequencing is more efficient at detecting mosaic embryos and improving pregnancy outcomes than single-nucleotide polymorphism array analysis. J Mol Diagn. 2021;23:710–8. https://doi.org/10.1016/j.jmoldx.2021.02.011.

    Article  PubMed  CAS  Google Scholar 

  34. Ozgur K, Berkkanoglu M, Bulut H, Yoruk GDA, Candurmaz NN, Coetzee K. Single best euploid versus single best unknown-ploidy blastocyst frozen embryo transfers: a randomized controlled trial. J Assist Reprod Genet. 2019;36:629–36. https://doi.org/10.1007/s10815-018-01399-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Doyle N, Gainty M, Eubanks A, Doyle J, Hayes H, Tucker M, et al. Donor oocyte recipients do not benefit from preimplantation genetic testing for aneuploidy to improve pregnancy outcomes. Hum Reprod. 2020;35:2548–55. https://doi.org/10.1093/humrep/deaa219.

    Article  PubMed  PubMed Central  Google Scholar 

  36. McCoy RC. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 2017;33:448–63. https://doi.org/10.1016/j.tig.2017.04.001.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Deng J, Hong HY, Zhao Q, Nadgauda A, Ashrafian S, Behr B, et al. Preimplantation genetic testing for aneuploidy in poor ovarian responders with four or fewer oocytes retrieved. J Assist Reprod Genet. 2020;37:1147–54. https://doi.org/10.1007/s10815-020-01765-y.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98:1103–11. https://doi.org/10.1016/j.fertnstert.2012.06.048

  39. Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87. https://doi.org/10.1093/humrep/dey021.

    Article  PubMed  CAS  Google Scholar 

  40. Victor AR, Griffin DK, Brake AJ, Tyndall JC, Murphy AE, Lepkowsky LT, et al. Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum Reprod. 2019;34:181–92. https://doi.org/10.1093/humrep/dey327.

    Article  PubMed  CAS  Google Scholar 

  41. Sachdev NM, McCulloh DH, Kramer Y, Keefe D, Grifo JA. The reproducibility of trophectoderm biopsies in euploid, aneuploid, and mosaic embryos using independently verified next-generation sequencing (NGS): a pilot study. J Assist Reprod Genet. 2020;37:559–71. https://doi.org/10.1007/s10815-020-01720-x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Girardi L, Serdarogullari M, Patassini C, Poli M, Fabiani M, Caroselli S, et al. Incidence, origin, and predictive model for the detection and clinical management of segmental aneuploidies in human embryos. Am J Hum Genet. 2020;106:525–34. https://doi.org/10.1016/j.ajhg.2020.03.005.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Coonen E, van Montfoort A, Carvalho F, Kokkali G, Moutou C, Rubio C, et al. ESHRE PGT Consortium data collection XVI-XVIII: cycles from 2013 to 2015. Hum Reprod Open. 2020;2020:h0aa043. https://doi.org/10.1093/hropen/hoaa043.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (32000589), Guangdong Basic and Applied Basic Research Foundation (2114050000636), National Key R&D Program of China (2016YFC1000205), and Guangdong Provincial Key Laboratory of Reproductive Medicine (2012A061400003). We sincerely thank all of the staff of the Reproductive Medicine Center of the First Affiliated Hospital of Sun Yat-sen University for their contributions to this study.

Author information

Authors and Affiliations

Authors

Contributions

X.T.S. and D.J.C. contributed to the interpretation of data and drafted the article. C.H.D., Y.X., Y.F., and B.C. were responsible for the analysis of data and revising the manuscript critically for important intellectual content. Y.L.W., J.W., R.L., J.G., J.F.P., H.Z., and Y.H.Z. participated in the acquisition of data. C.Q.Z. contributed to the conception and design and critical review of the article. All authors have approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Canquan Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoting Shen and Dongjia Chen contributed equally to this work and share first authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1050 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Chen, D., Ding, C. et al. Evaluating the application value of NGS-based PGT-A by screening cryopreserved MDA products of embryos from PGT-M cycles with known transfer outcomes. J Assist Reprod Genet 39, 1323–1331 (2022). https://doi.org/10.1007/s10815-022-02447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02447-7

Keywords

Navigation