Skip to main content
Log in

Dynamic assessment of human sperm DNA damage II: the effect of sperm concentration adjustment during processing

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of sperm concentration adjustment in human ejaculates on the sperm DNA quality and longevity.

Methods

Semen samples were obtained from 30 donors with a normal spermiogram. Following centrifugation, the sperm pellet was resuspended in PBS, and the sperm concentration adjusted to 200, 100, 50, 25, 12, and 6 × 106/mL. Each set of samples was incubated at 37 °C for 24 h, and the sperm DNA damage was assessed using the chromatin-dispersion test following 0 h, 2 h, 6 h, and 24 h of incubation.

Results

Sperm DNA fragmentation (SDF) did not differ between the selected experimental conditions at T0; however, Kaplan–Meier estimates for survival showed significant differences with respect to the dilution and time (all P values were smaller than .001). DNA fragmentation in semen samples adjusted to 200 × 106/mL was approximately 3.3 times higher when compared to samples containing 25 × 106/mL and 3.9 higher in comparison with samples adjusted to 12 × 106/mL following 2 h of in vitro incubation. Although there was evidence of individual variation in SDF during the incubation period, the general finding was that lower sperm concentrations resulted in a slower rate of DNA fragmentation.

Conclusions

Incubation of spermatozoa for ART purposes should be done following a concentration adjustment below 25 × 106/mL in order to avoid a higher susceptibility of the sperm DNA molecule towards fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Auger J, Eustache F, Ducot B, Blandin T, Daudin M, Diaz I, et al. Intra- and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories. Hum Reprod. 2000;15(11):2360–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lüpold S, Fitzpatrick JL. Sperm number trumps sperm size in mammalian ejaculate evolution. Proc Biol Sci. 2015;282(1819):20152122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karan P, Mohanty TK, Kumaresan A, Bhakat M, Baithalu RK, Verma K, et al. Improvement in sperm functional competence through modified low-dose packaging in French mini straws of bull semen. Andrologia. 2018;50:e13003.

    Article  CAS  PubMed  Google Scholar 

  4. Januskauskas A, Söderquist L, Håård MG, Håård MC, Lundeheim N, Rodriguez-Martinez H. Influence of sperm number per straw on the post-thaw sperm viability and fertility of Swedish red and white A.I. bulls. Acta Vet Scand. 1996;37(4):461–70.

    CAS  PubMed  Google Scholar 

  5. Inaba Y, Abe R, Geshi M, Matoba S, Nagai T, Somfai T. Sex-sorting of spermatozoa affects developmental competence of in vitro fertilized oocytes in a bull-dependent manner. J Reprod Dev. 2016;62(5):451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tvrdá E, López-Fernández C, Sánchez-Martín P, Gosálvez J. Sperm DNA fragmentation in donors and normozoospermic patients attending for a first spermiogram: static and dynamic assessment. Andrologia. 2018. https://doi.org/10.1111/and.12986.

  8. Zheng JF, Chen XB, Zhao LW, Gao MZ, Peng J, Qu XQ, et al. Jin XL. ICSI treatment of severe male infertility can achieve prospective embryo quality compared with IVF of fertile donor sperm on sibling oocytes. Asian J Androl. 2015;17(5):845–9.

    PubMed  PubMed Central  Google Scholar 

  9. Gosálvez J, Cortés-Gutiérrez EI, Nuñez R, Fernández JL, Caballero P, López-Fernández C, et al. A dynamic assessment of sperm DNA fragmentation versus sperm viability in proven fertile human donors. Fertil Steril. 2009;92(6):1915–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gosálvez J, López-Fernández C, Fernández JL, Gouraud A, Holt WV. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol Reprod Dev. 2011;78(12):951–61.

    Article  CAS  PubMed  Google Scholar 

  11. Gosálvez J, García-Ochoa C, Ruíz-Jorro M, Martínez-Moya M, Sánchez-Martín P, Caballero P. ¿A qué velocidad “muere” el ácido desoxirribonucleico del espermatozoide tras descongelar muestras seminales procedentes de donantes? Rev Int Androl. 2013;11:85–93.

    Google Scholar 

  12. López-Fernández C, Johnston SD, Fernández JL, Wilson RJ, Gosálvez J. Fragmentation dynamics of frozen-thawed ram sperm DNA is modulated by sperm concentration. Theriogenology. 2010;74(8):1362–70.

    Article  CAS  PubMed  Google Scholar 

  13. Setchell BP. Sperm counts in semen of farm animals 1932-1995. Int J Androl. 1997;20(4):209–14.

    Article  CAS  PubMed  Google Scholar 

  14. David I, Kohnke P, Lagriffoul G, Praud O, Plouarboué F, Degond P, et al. Mass sperm motility is associated with fertility in sheep. Anim Reprod Sci. 2015;161:75–81.

    Article  PubMed  Google Scholar 

  15. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A. Critical appraisal of World Health Organization's new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79(1):16–22.

    Article  PubMed  Google Scholar 

  16. García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengua JM, Navarro J, et al. Protamine P1/P2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril. 2011;95:105–9.

    Article  CAS  PubMed  Google Scholar 

  17. Gosálvez J, Caballero P, López-Fernández C, Ortega L, Guijarro JA, Fernández JL, et al. Can DNA fragmentation of neat or swim-up spermatozoa be used to predict pregnancy following ICSI of fertile oocyte donors? Asian J Androl. 2013;15(6):812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorostghoal M, Kazeminejad SR, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia. 2017;49(10):e12762.

    Article  CAS  Google Scholar 

  19. Evenson DP. Sperm chromatin structure assay (SCSA®): 30 years of experience with the SCSA®. In: Zini A, Agarawal A, editors. Sperm chromatin. Biological and clinical applications in male infertility and assisted reproduction. New York: Springer; 2011. p. 125–49.

    Google Scholar 

  20. Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005;20:3446–51.

    Article  CAS  PubMed  Google Scholar 

  21. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.

    Article  PubMed  Google Scholar 

  22. Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod BioMed Online. 2003;7:477–84.

    Article  PubMed  Google Scholar 

  23. Zhang Z, Zhu L, Jiang H, Chen H, Chen Y, Dai Y. Sperm DNA fragmentation index and pregnancy outcome after IVF or ICSI: a meta-analysis. J Assist Reprod Genet. 2015;418;32(1):17–26.

    Article  PubMed  Google Scholar 

  24. Gosálvez J, Cortés-Gutierez E, López-Fernández C, Fernández JL, Caballero P, Nuñez R. Sperm deoxyribonucleic acid fragmentation dynamics in fertile donors. Fertil Steril. 2009;92(1):170–3.

    Article  CAS  PubMed  Google Scholar 

  25. Matsuura R, Takeuchi T, Yoshida A. Preparation and incubation conditions affect the DNA integrity of ejaculated human spermatozoa. Asian J Androl. 2010;12:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmed I, Abdelateef S, Laqqan M, Amor H, Abdel-Lah MA, Hammadeh ME. Influence of extended incubation time on human sperm chromatin condensation, sperm DNA strand breaks and their effect on fertilisation rate. Andrologia. 2018. https://doi.org/10.1111/and.12960.

  27. Nabi A, Khalili MA, Halvaei I, Roodbari F. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation. Andrologia. 2014;46:374–9.

    Article  CAS  PubMed  Google Scholar 

  28. Young KE, Robbins WA, Xun L, Elashoff D, Rothmann SA, Perreault SD. Evaluation of chromosome breakage and DNA integrity in sperm: an investigation of remote semen collection conditions. J Androl. 2003;24(6):853–61.

    Article  CAS  PubMed  Google Scholar 

  29. Gosálvez J, Johnston S, López-Fernández C, Gosálbez A, Arroyo F, Fernández JL, et al. Sperm fractions obtained following density gradient centrifugation in human ejaculates show differences in sperm DNA longevity. Asian Pac J Reprod. 2014;3(2):116–20.

    Article  Google Scholar 

  30. Gosálvez J, López-Fernández C, Hermoso A, Fernández JL, Kjelland ME. Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability—implications for fisheries and aquaculture. Aquaculture. 2014;433:173–82.

    Article  CAS  Google Scholar 

  31. Johnston SD, López-Fernández C, Arroyo F, Gosálbez A, Cortés Gutiérrez EI, Fernández JL, et al. Reduced sperm DNA longevity is associated with an increased incidence of still born; evidence from a multi-ovulating sequential artificial insemination animal model. J Assist Reprod Genet. 2016;33(9):1231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Banasewska D, Kondracki S, Wysokińska A. Effect of sperm concentration on ejaculate for morphometric traits of spermatozoas of the pietrain breed boars. J Cent Eur Agric. 2009;10(4):383–96.

    Google Scholar 

  33. Salazar JL Jr, Teague SR, Love CC, Brinsko SP, Blanchard TL, Varner DD. Effect of cryopreservation protocol on postthaw characteristics of stallion sperm. Theriogenology. 2011;76(3):409–18.

    Article  CAS  PubMed  Google Scholar 

  34. Contri A, Gloria A, Robbe D, Sfirro MP, Carluccio A. Effect of sperm concentration on characteristics of frozen-thawed semen in donkeys. Anim Reprod Sci. 2012;136(1–2):74–80.

    Article  PubMed  Google Scholar 

  35. Moghbeli M, Kohram H, Zare-Shahaneh A, Zhandi M, Sharideh H, Sharafi M. Effect of sperm concentration on characteristics and fertilization capacity of rooster sperm frozen in the presence of the antioxidants catalase and vitamin E. Theriogenology. 2016;86(6):1393–8.

    Article  CAS  PubMed  Google Scholar 

  36. Iommiello VM, Albani E, Di Rosa A, Marras A, Menduni F, Morreale G, et al. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol. 2015;2015:321901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oluwakemi O, Olufeyisipe A. DNA fragmentation and oxidative stress compromise sperm motility and survival in late pregnancy exposure to omega-9 fatty acid in rats. Iran J Basic Med Sci. 2016;19(5):511–20.

    PubMed  PubMed Central  Google Scholar 

  38. Gosálvez J, López-Fernández C, Fernández JL, Esteves SC, Johnston SD. Unpacking the mysteries of sperm DNA fragmentation. Ten frequently asked questions. J Reprod Biotechnol Fertil. 2015;4:1–16.

    Article  Google Scholar 

  39. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Aitken RJ. DNA damage in human spermatozoa; important contributor to mutagenesis in the offspring. Transl Androl Urol. 2017;6(Suppl 4):S761–4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Agarwal A, Qiu E, Sharma R. Laboratory assessment of oxidative stress in semen. Arab J Urol. 2018;16(1):77–86.

    Article  PubMed  Google Scholar 

  42. Palani AF. Effect of serum antioxidant levels on sperm function in infertile male. Middle East Fertil Soc J. 2018;23(1):19–22.

    Article  Google Scholar 

  43. Aitken RJ, De Luliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2008;32:46–56.

    Article  CAS  PubMed  Google Scholar 

  44. Thomson LK, Fleming SD, Aitken RJ, De luliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.

    Article  CAS  PubMed  Google Scholar 

  45. Ghaleno LR, Valojerdi MR, Hassani F, Chehrazi M, Janzamin E. High level of intracellular sperm oxidative stress negatively influences embryo pronuclear formation after intracytoplasmic sperm injection treatment. Andrologia. 2014;46(10):1118–27.

    Article  CAS  PubMed  Google Scholar 

  46. Ball BA. Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim Reprod Sci. 2008;107:257–67.

    Article  CAS  PubMed  Google Scholar 

  47. Lucio CF, Regazzi FM, Silva LCG, Angrimani DSR, Nichi M, Vannucchi CI. Oxidative stress at different stages of two-step semen cryopreservation procedures in dogs. Theriogenology. 2016;85(9):1568–75.

    Article  CAS  PubMed  Google Scholar 

  48. Mahfouz RZ, Du Plessis SS, Aziz N, Sharma R, Sabanegh M, Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril. 2010;93(3):814–21.

    Article  CAS  PubMed  Google Scholar 

  49. Aitken RJ, Baker MA, Nixon B. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J Androl. 2015;17(4):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28(8):711–24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Peirce KL, Roberts P, Ali J, Matson P. The preparation and culture of washed human sperm: a comparison of a suite of protein-free media with media containing human serum albumin. Asian Pac J Reprod. 2015;4(3):222–7.

    Article  Google Scholar 

  52. Ying-Fu Shih YF, Tzeng SL, Chen WJ, Huang CC, Chen HH, Lee TH, et al. Effects of synthetic serum supplementation in sperm preparation media on sperm capacitation and function test results. Oxidative Med Cell Longev. 2016;2016. https://doi.org/10.1155/2016/1027158.

Download references

Funding

This study was funded by the Spanish Ministry of Economy, Industry and Competitiveness—Programa Retos RTC-2016-4733-1 and by the Slovak Research and Development Agency Grant no APVV-15-0544. The funding bodies had no involvement in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Tvrdá.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Ethical approval

All procedures performed in the study were in accordance with the ethical standards of the institutional research committee, with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tvrdá, E., Arroyo, F., Ďuračka, M. et al. Dynamic assessment of human sperm DNA damage II: the effect of sperm concentration adjustment during processing. J Assist Reprod Genet 36, 799–807 (2019). https://doi.org/10.1007/s10815-019-01423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01423-y

Keywords

Navigation