Skip to main content
Log in

Respirometric reserve capacity of cumulus cell mitochondria correlates with oocyte maturity

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Oocyte competence is critical in success of assisted reproduction. Metabolic signaling between oocyte and cumulus cells within the cumulus-oocyte complex procure oocyte development. This study evaluated the relationship between respirometric activity of cumulus cells and maturity of corresponding oocytes.

Methods

In prospective cohort study, 20 women of age 28–42 undergoing IVF procedure were involved. To evaluate oocyte maturity, the cumulus cells from individual oocytes were assessed flow cytometrically by double labeling of cells with mitochondria specific dyes. The respirometric stress analysis using ATPase inhibitor oligomycin was applied to assess mitochondria metabolic abnormalities.

Results

The cumulus cells from each of 327 oocytes were analyzed. The respirometric index of cumulus cells (O′R) strongly correlates with maternal ovarian reserve, showing to be higher in patients with higher AMH (p < 0.0017). Cumulus cells from immature oocytes had severe mitochondria deficiency, i.e., low O′R, than those from mature oocytes (p < 0.02). No significant difference in respirometric capacity was found between cumulus cells associated with good vs poor-quality embryos.

Conclusions

The oocyte maturity is potentially related to the mitochondria activity of cumulus cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kovalevsky G, Patrizio P. High rates of embryo wastage with use of assisted reproductive technology: a look at the trends between 1995 and 2001 in the United States. Fertil Steril. 2005;84(2):325–30. https://doi.org/10.1016/j.fertnstert.2005.04.020.

    Article  PubMed  Google Scholar 

  2. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  3. Wu LL, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, et al. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438–45. https://doi.org/10.1210/en.2010-0551.

    Article  CAS  PubMed  Google Scholar 

  4. Colton SA, Humpherson PG, Leese HJ, Downs SM. Physiological changes in oocyte-cumulus cell complexes from diabetic mice that potentially influence meiotic regulation. Biol Reprod. 2003;69(3):761–70. https://doi.org/10.1095/biolreprod.102.013649.

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez T, Seidler EA, Gardner DK, Needleman D, Sakkas D. Will noninvasive methods surpass invasive for assessing gametes and embryos? Fertil Steril. 2017;108(5):730–7. https://doi.org/10.1016/j.fertnstert.2017.10.004.

    Article  PubMed  Google Scholar 

  6. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16. https://doi.org/10.1016/j.fertnstert.2014.11.015.

    Article  PubMed  Google Scholar 

  7. Silvestre F, Boni R, Fissore RA, Tosti E. Ca2+ signaling during maturation of cumulus-oocyte complex in mammals. Mol Reprod Dev. 2011;78(10–11):744–56. https://doi.org/10.1002/mrd.21332.

    Article  CAS  PubMed  Google Scholar 

  8. Su YQ, Sugiura K, Wigglesworth K, O'Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21. https://doi.org/10.1242/dev.009068.

    Article  CAS  PubMed  Google Scholar 

  9. Downs SM, Mastropolo AM. The participation of energy substrates in the control of meiotic maturation in murine oocytes. Dev Biol. 1994;162(1):154–68. https://doi.org/10.1006/dbio.1994.1075.

    Article  CAS  PubMed  Google Scholar 

  10. Behrman HR, Preston SL, Pellicer A, Parmer TG. Oocyte maturation is regulated by modulation of the action of FSH in cumulus cells. Prog Clin Biol Res. 1988;267:115–35.

    CAS  PubMed  Google Scholar 

  11. Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, et al. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod. 2015;92(1):16. https://doi.org/10.1095/biolreprod.114.120634.

    Article  CAS  PubMed  Google Scholar 

  12. Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603. https://doi.org/10.1242/dev.006882.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, et al. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol Endocrinol. 2014;28(9):1502–21. https://doi.org/10.1210/me.2014-1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miao YL, Liu XY, Qiao TW, Miao DQ, Luo MJ, Tan JH. Cumulus cells accelerate aging of mouse oocytes. Biol Reprod. 2005;73(5):1025–31. https://doi.org/10.1095/biolreprod.105.043703.

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda S, Imai H, Yamada M. Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction. 2003;125(3):369–76.

    Article  CAS  PubMed  Google Scholar 

  16. Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Assist Reprod Genet. 2001;18(9):490–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dumesic DA, Guedikian AA, Madrigal VK, Phan JD, Hill DL, Alvarez JP, et al. Cumulus cell mitochondrial resistance to stress in vitro predicts oocyte development during assisted reproduction. J Clin Endocrinol Metab. 2016;101(5):2235–45. https://doi.org/10.1210/jc.2016-1464.

    Article  CAS  PubMed  Google Scholar 

  18. Bentov Y, Yavorska T, Esfandiari N, Jurisicova A, Casper RF. The contribution of mitochondrial function to reproductive aging. J Assist Reprod Genet. 2011;28(9):773–83. https://doi.org/10.1007/s10815-011-9588-7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu LL, Russell DL, Norman RJ, Robker RL. Endoplasmic reticulum (ER) stress in cumulus-oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (DeltaPsi m), and embryo development. Mol Endocrinol. 2012;26(4):562–73. https://doi.org/10.1210/me.2011-1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol : RB&E. 2014;12:111. https://doi.org/10.1186/1477-7827-12-111.

    Article  CAS  Google Scholar 

  21. Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013;2013:183024–10. https://doi.org/10.1155/2013/183024.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012;111(9):1198–207. https://doi.org/10.1161/CIRCRESAHA.112.268946.

    Article  CAS  PubMed  Google Scholar 

  23. Goldenthal MJ, Marin-Garcia J. Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem. 2004;262(1–2):1–16.

    Article  CAS  PubMed  Google Scholar 

  24. Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175–80.

    Article  CAS  PubMed  Google Scholar 

  25. Ramakrishna R, Edwards JS, McCulloch A, Palsson BO. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol Regul Integr Comp Physiol. 2001;280(3):R695–704.

    Article  CAS  PubMed  Google Scholar 

  26. Dalton CM, Szabadkai G, Carroll J. Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J Cell Physiol. 2014;229(3):353–61. https://doi.org/10.1002/jcp.24457.

    Article  CAS  PubMed  Google Scholar 

  27. Collins Y, Chouchani ET, James AM, Menger KE, Cocheme HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci. 2012;125(Pt 4):801–6. https://doi.org/10.1242/jcs.098475.

    Article  CAS  PubMed  Google Scholar 

  28. Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta. 1998;1366(1–2):53–67.

    Article  CAS  PubMed  Google Scholar 

  29. Bing YZ, Hirao Y, Iga K, Che LM, Takenouchi N, Kuwayama M, et al. In vitro maturation and glutathione synthesis of porcine oocytes in the presence or absence of cysteamine under different oxygen tensions: role of cumulus cells. Reprod Fertil Dev. 2002;14(3–4):125–31.

    Article  CAS  PubMed  Google Scholar 

  30. Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod. 2000;63(3):805–10.

    Article  CAS  PubMed  Google Scholar 

  31. Kaya A, Gerashchenko MV, Seim I, Labarre J, Toledano MB, Gladyshev VN. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proc Natl Acad Sci U S A. 2015;112(34):10685–90. https://doi.org/10.1073/pnas.1505315112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14(12):711–9. https://doi.org/10.1093/molehr/gan067.

    Article  CAS  PubMed  Google Scholar 

  33. Setterfield K, Williams AJ, Donald J, Thorburn DR, Kirby DM, Trounce I, et al. Flow cytometry in the study of mitochondrial respiratory chain disorders. Mitochondrion. 2002;1(5):437–45.

    Article  CAS  PubMed  Google Scholar 

  34. Matteucci E, Manzini S, Ghimenti M, Consani C, Giampietro O. Rapid flow cytometric method for measuring mitochondrial membrane potential, respiratory burst activity, and intracellular thiols of human blood leukocytes. Open Chem Biom Methods. 2009;2:65–8.

    Article  Google Scholar 

  35. Rottenberg H, Wu S. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta. 1998;1404(3):393–404.

    Article  CAS  PubMed  Google Scholar 

  36. Gregori G, Denis M, Lefevre D, Beker B. A flow cytometric approach to assess phytoplankton respiration. Methods Cell Sci. 2002;24(1–3):99–106.

    Article  CAS  PubMed  Google Scholar 

  37. Panov A, Orynbayeva Z. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One. 2013;8(8):e72078. https://doi.org/10.1371/journal.pone.0072078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nicholls DG, Darley-Usmar VM, Wu M, Jensen PB, Rogers GW, Ferrick DA. Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp : JoVE. 2010(46). doi:https://doi.org/10.3791/2511.

  39. Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  40. Barbakadze L, Kristesashvili J, Khonelidze N, Tsagareishvili G. The correlations of anti-mullerian hormone, follicle-stimulating hormone and antral follicle count in different age groups of infertile women. Int J Fertil Steril. 2015;8(4):393–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie HL, Wang YB, Jiao GZ, Kong DL, Li Q, Li H, et al. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Sci Rep. 2016;6:20764. https://doi.org/10.1038/srep20764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7(5):425–9.

    Article  CAS  Google Scholar 

  43. Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, et al. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod. 2007;22(6):1681–6. https://doi.org/10.1093/humrep/dem070.

    Article  CAS  PubMed  Google Scholar 

  44. May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferre-L’Hotellier V, Moriniere C, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22(6):725–43. https://doi.org/10.1093/humupd/dmw028.

    Article  CAS  PubMed  Google Scholar 

  45. Hsu AL, Townsend PM, Oehninger S, Castora FJ. Endometriosis may be associated with mitochondrial dysfunction in cumulus cells from subjects undergoing in vitro fertilization-intracytoplasmic sperm injection, as reflected by decreased adenosine triphosphate production. Fertil Steril. 2015;103(2):347–52 e1. https://doi.org/10.1016/j.fertnstert.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  46. Pacella-Ince L, Zander-Fox DL, Lan M. Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Hum Reprod. 2014;29(7):1490–9. https://doi.org/10.1093/humrep/deu071.

    Article  CAS  PubMed  Google Scholar 

  47. Van Blerkom J, Davis P. Mitochondrial signaling and fertilization. Mol Hum Reprod. 2007;13(11):759–70. https://doi.org/10.1093/molehr/gam068.

    Article  CAS  PubMed  Google Scholar 

  48. Panov A, Orynbayeva Z. Determination of mitochondrial metabolic phenotype through investigation of the intrinsic inhibition of succinate dehydrogenase. Anal Biochem. 2017;552:30–7. https://doi.org/10.1016/j.ab.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  49. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008;1147:37–52. https://doi.org/10.1196/annals.1427.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810:25–58. https://doi.org/10.1007/978-1-61779-382-0_3.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan YQ, Van Soom A, Leroy JL, Dewulf J, Van Zeveren A, de Kruif A, et al. Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence. Theriogenology. 2005;63(8):2147–63. https://doi.org/10.1016/j.theriogenology.2004.09.054.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Saniya Ossikbayeva for her excellent technical assistance. The support of EMD Serono, Inc. to the Main Line Fertility Center is appreciated. The sponsor has no involvement in experimental design, experimental performance, data analysis, and manuscript generation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharon H. Anderson or Zulfiya Orynbayeva.

Ethics declarations

Conflict of interest

Michael Glassner is a founding partner and the medical director at the Main Line Fertility Center. Other authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, S.H., Glassner, M.J., Melnikov, A. et al. Respirometric reserve capacity of cumulus cell mitochondria correlates with oocyte maturity. J Assist Reprod Genet 35, 1821–1830 (2018). https://doi.org/10.1007/s10815-018-1271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1271-9

Keywords

Navigation