Skip to main content

Advertisement

Log in

The mutation-free embryo for in vitro fertilization selected by MALBAC-PGD resulted in a healthy live birth from a family carrying PKD 1 mutation

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Autosomal dominant polycystic kidney disease (ADPKD, autosomal dominant PKD or adult-onset PKD) is the most prevalent and potentially lethal kidney disease that is hereditary and lacks effective treatment. Preimplantation genetic diagnosis (PGD) of embryos in assistant reproductive technology (ART) helps to select mutation-free embryos for blocking ADPKD inheritance from the parents to their offspring. However, there are multiple pseudogenes in the PKD1 coding region, which make blocking ADPKD inheritance by PGD complicated and difficult. Therefore, this technique has not been recommended and used routinely to ADPKD family plan.

Methods and Results

Here, we report a new strategy of performing PGD in screening (target-) mutation-free embryos. We firstly used a long-range PCR amplification and next generation sequencing to identify the potential PKD1 mutant(s). After pathogenic variants were detected, multiple annealing and looping-based amplification cycles (MALBAC), a recently developed whole genome amplification method, was used to screen embryo cells. We successfully distinguished the mutated allele among pseudogenes and obtained mutation-free embryos for implantation. The first embryo transfer attempt resulted in a healthy live birth free of ADPKD condition and chromosomal anomalies which was confirmed by aminocentesis at week 18 of gestation, and by performing live birth genetic screening.

Conclusions

The first MALBAC-PGD attempt in ADPKD patient resulted in a healthy live birth free of ADPKD and chromosomal anomalies. MALBAC-PGD also enables selecting embryos without aneuploidy together and target gene mutation, thereby increasing implantation and live birth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Simms RJ. Autosomal dominant polycystic kidney disease. BMJ. 2016;352:i679. doi:10.1136/bmj.i679.

    Article  PubMed  Google Scholar 

  2. Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993;329(5):332–42. doi:10.1056/NEJM199307293290508.

    Article  CAS  PubMed  Google Scholar 

  3. Ong AC, Devuyst O, Knebelmann B, Walz G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet (London, England). 2015;385(9981):1993–2002. doi:10.1016/s0140-6736(15)60907-2.

    Article  Google Scholar 

  4. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–60. doi:10.1038/ng0695-151.

    Article  CAS  PubMed  Google Scholar 

  5. Burn TC, Connors TD, Dackowski WR, Petry LR, Van Raay TJ, Millholland JM, et al. Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine-rich repeat. The American PKD1 Consortium (APKD1 Consortium). Hum Mol Genet. 1995;4(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  6. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell. 1995;81(2):289–98.

  7. Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature. 1985;317(6037):542–4.

    Article  CAS  PubMed  Google Scholar 

  8. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.

    Article  CAS  PubMed  Google Scholar 

  9. Kimberling WJ, Kumar S, Gabow PA, Kenyon JB, Connolly CJ, Somlo S. Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics. 1993;18(3):467–72.

    Article  CAS  PubMed  Google Scholar 

  10. Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GF. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev. 2015;(7):Cd010294. doi:10.1002/14651858.CD010294.pub2.

  11. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18. doi:10.1056/NEJMoa1205511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6. doi:10.1126/science.1229164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan AY, Michaeel A, Liu G, Elemento O, Blumenfeld J, Donahue S, et al. Molecular diagnosis of autosomal dominant polycystic kidney disease using next-generation sequencing. J Mol Diagn: JMD. 2014;16(2):216–28. doi:10.1016/j.jmoldx.2013.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan YC, Michaeel A, Blumenfeld J, Donahue S, Parker T, Levine D, et al. A novel long-range PCR sequencing method for genetic analysis of the entire PKD1 gene. J Mol Diagn: JMD. 2012;14(4):305–13. doi:10.1016/j.jmoldx.2012.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu G, Tan AY, Michaeel A, Blumenfeld J, Donahue S, Bobb W, et al. Development and validation of a whole genome amplification long-range PCR sequencing method for ADPKD genotyping of low-level DNA samples. Gene. 2014;550(1):131–5. doi:10.1016/j.gene.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  16. Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol: JASN. 2012;23(5):915–33. doi:10.1681/ASN.2011101032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med: Off J Am Coll Me Genet. 2015;17(5):405–24. doi:10.1038/gim.2015.30.

    Article  Google Scholar 

  18. Yan B, Wang S, Jia H, Liu X, Wang X. An efficient weighted tag SNP-set analytical method in genome-wide association studies. BMC Genet. 2015;16:25. doi:10.1186/s12863-015-0182-3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Watnick TJ, Piontek KB, Cordal TM, Weber H, Gandolph MA, Qian F, et al. An unusual pattern of mutation in the duplicated portion of PKD1 is revealed by use of a novel strategy for mutation detection. Hum Mol Genet. 1997;6(9):1473–81.

    Article  CAS  PubMed  Google Scholar 

  20. Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):1627–30. doi:10.1126/science.1229112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506. doi:10.1016/j.cell.2013.11.040.

    Article  CAS  PubMed  Google Scholar 

  22. Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genom Hum Genet. 2015;16:79–102. doi:10.1146/annurev-genom-090413-025352.

    Article  CAS  Google Scholar 

  23. Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet. 2001;68(1):46–63. doi:10.1086/316939.

    Article  CAS  PubMed  Google Scholar 

  24. Corradi V, Gastaldon F, Caprara C, Giuliani A, Martino F, Ferrari F, et al. Predictors of rapid disease progression in autosomal dominant polycystic kidney disease. Minerva Med. 2017;108(1):43–56. doi:10.23736/S0026-4806.16.04830-8.

    PubMed  Google Scholar 

  25. Swift O, Vilar E, Rahman B, Side L, Gale DP. Attitudes in patients with autosomal dominant polycystic kidney disease toward prenatal diagnosis and preimplantation genetic diagnosis. Genetic testing and molecular biomarkers. 2016;20(12):741–6. doi:10.1089/gtmb.2016.0050.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Natural Science Foundation of China (31371172, 81670612 to CM), Shanghai Top Priority Key Clinical Disciplines Construction Project (to CM), The National Key Research and Development Program of China (No. 2016YFC0901502), and Systemic Redesign and Demonstration for Early Detection, Evaluation and Management of Chronic Kidney Disease in Shanghai (SCREEMING Study GWIV-18 to CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Mei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The study protocol and all subjects who participated in this study were approved by the Institutional Review Board of our institute in which informed consent was obtained from all families prior to participation in accordance with institutional and national guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ma, Y., Yu, S. et al. The mutation-free embryo for in vitro fertilization selected by MALBAC-PGD resulted in a healthy live birth from a family carrying PKD 1 mutation. J Assist Reprod Genet 34, 1653–1658 (2017). https://doi.org/10.1007/s10815-017-1018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1018-z

Keywords

Navigation