Skip to main content
Log in

The combination of calcium ionophore A23187 and GM-CSF can safely salvage aged human unfertilized oocytes after ICSI

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Artificial oocyte activation using calcium ionophores and enhancement of embryonic developmental potential by the granulocyte-macrophage colony-stimulating factor (GM-CSF) have already been reported. In this study, we evaluated the synergistic effect of these two methods on aged human unfertilized oocytes after intracytoplasmic sperm injection (ICSI). Then, we cultured the resulting embryos to the blastocyst stage and screened them for chromosomal abnormalities, to assess the safety of this protocol.

Methods

Aged human oocytes deemed unfertilized after ICSI were activated, either by briefly applying the calcium ionophore A23187 alone (group A) or by briefly applying the ionophore and then supplementing the culture medium with recombinant human GM-CSF (rhGM-CSF) (group B). Next, the development was monitored in a time-lapse incubator system, and ploidy was analyzed by array comparative genomic hybridization (aCGH), after whole embryo biopsy and whole genome amplification. Differences between oocytes and resulting embryos in both groups were evaluated statistically.

Results

Oocytes unfertilized after ICSI can be activated with the calcium ionophore A23187 to show two pronuclei and two polar bodies. Addition of rhGM-CSF in the culture medium of A23187-activated oocytes enhances their cleaving and blastulation potential and results in more euploid blastocysts compared to the culture medium alone.

Conclusions

This study shows that activating post-ICSI aged human unfertilized oocytes with a combination of a calcium ionophore and a cytokine can produce good-morphology euploid blastocysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Nagy Z, Joris H, Tournaye H, Smitz J, Camus M, et al. Analysis of 76 total fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum Reprod. 1995;10:2630–6.

    Article  CAS  PubMed  Google Scholar 

  3. Moomjy M, Sills ES, Rosenwaks Z, Palermo GD. Implications of complete fertilization failure after intracytoplasmic sperm injection for subsequent fertilization and reproductive outcome. Hum Reprod. 1998;13:2212–6.

    Article  CAS  PubMed  Google Scholar 

  4. de Klerk C, Macklon NS, Heijnen EM, Eijkemans MJ, Fauser BC, Passchier J, et al. The psychological impact of IVF failure after two or more cycles of IVF with a mild versus standard treatment strategy. Hum Reprod. 2007;22:2554–8.

    Article  PubMed  Google Scholar 

  5. Tesarik J, Rienzi L, Ubaldi F, Mendoza C, Greco E. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil Steril. 2002;78:619–24.

    Article  PubMed  Google Scholar 

  6. Rawe VY, Kopelman S, Nodar FN, Olmedo SB, Chillik CF. Pronuclear abnormalities and cytoskeletal organization during assisted fertilization in a patient with multifollicular ovarian response. J Assist Reprod Genet. 2002;19:152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–44.

    CAS  PubMed  Google Scholar 

  8. Ebner T, Oppelt P, Wober M, Staples P, Mayer RB, Sonnleitner U, et al. Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study. Hum Reprod. 2015;30:97–102.

    Article  CAS  PubMed  Google Scholar 

  9. Nomikos M. Novel signalling mechanism and clinical applications of sperm-specific PLCζ. Biochem Soc Trans. 2015;43:371–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kashir J, Nomikos M, Swann K, Lai FA. PLCζ or PAWP: revisiting the putative mammalian sperm factor that triggers egg activation and embryogenesis. Mol Hum Reprod. 2015;21:383–8.

    Article  PubMed  Google Scholar 

  11. Nikiforaki D, Vanden Meerschaut F, de Roo C, Lu Y, Ferrer-Buitrago M, de Sutter P, et al. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil Steril. 2016;105:798–806.

    Article  CAS  PubMed  Google Scholar 

  12. Baltaci V, Ayvaz OU, Unsal E, Aktas Y, Baltaci A, Turhan F, et al. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril. 2010;94:900–4.

    Article  PubMed  Google Scholar 

  13. Mansour R, Fahmy I, Tawab NA, Kamal A, El-Demery Y, Aboulghar M, et al. Electrical activation of oocytes after intracytoplasmic sperm injection: a controlled randomized study. Fertil Steril. 2009;91:133–9.

    Article  PubMed  Google Scholar 

  14. Yanagida K, Katayose H, Yazawa H, Kimura Y, Sato A, Yanagimachi H, et al. Successful fertilization and pregnancy following ICSI and electrical oocyte activation. Hum Reprod. 1999;14:1307–11.

    Article  CAS  PubMed  Google Scholar 

  15. Ebner T, Moser M, Sommergruber M, Jesacher K, Tews G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod. 2004;19:1837–41.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Han XJ, Liu MH, Wang SY, Jia CW, Yu L, et al. Three-day-old human unfertilized oocytes after in vitro fertilization/intracytoplasmic sperm injection can be activated by calcium ionophore a23187 or strontium chloride and develop to blastocysts. Cell Reprogram. 2014;16:276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Q, Zhao Y, Gao X, Li Y, Ma S, Mullen S, et al. Combination of calcium ionophore A23187 with puromycin salvages human unfertilized oocytes after ICSI. Eur J Obstet Gynecol Reprod Biol. 2006;126:72–6.

    Article  CAS  PubMed  Google Scholar 

  18. Ebner T, Koster M, Shebl O, Moser M, Van der Ven H, Tews G, et al. Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility. Fertil Steril. 2012;98:1432–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ebner T, Maurer M, Oppelt P, Mayer RB, Duba HC, Costamoling W, et al. Healthy twin live-birth after ionophore treatment in a case of theophylline-resistant Kartagener syndrome. J Assist Reprod Genet. 2015;32:873–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebner T, Montag M, Oocyte Activation Study Group, Montag M, Van der Ven K, Van der Ven H, et al. Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study. Reprod Biomed Online. 2015;30:359–65.

    Article  CAS  PubMed  Google Scholar 

  21. Eldar-Geva T, Brooks B, Margalioth EJ, Zylber-Haran E, Gal M, Silber SJ. Successful pregnancy and delivery after calcium ionophore oocyte activation in a normozoospermic patient with previous repeated failed fertilization after intracytoplasmic sperm injection. Fertil Steril. 2003;79s3:1656–8.

    Article  Google Scholar 

  22. Lu Q, Chen X, Li Y, Zhang XH, Liang R, Zhao YP, et al. A live birth of activated one-day-old unfertilized oocyte for a patient who experienced repeatedly near-total fertilization failure after intracytoplasmic sperm injection. Chin Med J. 2012;125:546–8.

    PubMed  Google Scholar 

  23. Vanden Meerschaut F, Nikiforaki D, De Gheselle S, Dullaerts V, Van den Abbeel E, Gerris J, et al. Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum Reprod. 2012;27:1977–84.

    Article  CAS  PubMed  Google Scholar 

  24. Check JH, Summers-Chase D, Cohen R, Brasile D. Artificial oocyte activation with calcium ionophore allowed fertilization and pregnancy in a couple with long-term unexplained infertility where the female partner had diminished EGG reserve and failure to fertilize oocytes despite intracytoplasmic sperm injection. Clin Exp Obstet Gynecol. 2010;37:263–5.

    CAS  PubMed  Google Scholar 

  25. Caglar Aytac P, Kilicdag EB, Haydardedeoglu B, Simsek E, Cok T, Parlakgumus HA. Can calcium ionophore “use” in patients with diminished ovarian reserve increase fertilization and pregnancy rates? A randomized, controlled study. Fertil Steril. 2015;104:1168–74.

    Article  CAS  PubMed  Google Scholar 

  26. Borges Jr E, de Almeida Ferreira Braga DP, de Sousa Bonetti TC, Iaconelli Jr A, Franco Jr JG. Artificial oocyte activation with calcium ionophore A23187 in intracytoplasmic sperm injection cycles using surgically retrieved spermatozoa. Fertil Steril. 2009;92:131–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kang HJ, Lee SH, Park YS, Lim CK, Ko DS, Yang KM, et al. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin Exp Reprod Med. 2015;42:45–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nasr-Esfahani MH, Razavi S, Javdan Z, Tavalaee M. Artificial oocyte activation in severe teratozoospermia undergoing intracytoplasmic sperm injection. Fertil Steril. 2008;90:2231–7.

    Article  PubMed  Google Scholar 

  29. Darwish E, Magdi Y. A preliminary report of successful cleavage after calcium ionophore activation at ICSI in cases with previous arrest at the pronuclear stage. Reprod Biomed Online. 2015;31:799–804.

    Article  CAS  PubMed  Google Scholar 

  30. Ruef C, Coleman DL. Granulocyte-macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness. Rev Infect Dis. 1990;12:41–62.

    Article  CAS  PubMed  Google Scholar 

  31. Giacomini G, Tabibzadeh SS, Satyaswaroop PG, Bonsi L, Vitale L, Bagnara GP, et al. Epithelial cells are the major source of biologically active granulocyte macrophage colony-stimulating factor in human endometrium. Hum Reprod. 1995;10:3259–63.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Y, Chegini N. The expression of granulocyte macrophage-colony stimulating factor (GM-CSF) and receptors in human endometrium. Am J Reprod Immunol. 1999;42:303–11.

    Article  CAS  PubMed  Google Scholar 

  33. Berkowitz RS, Faris HM, Hill JA, Anderson DJ. Localization of leukocytes and cytokines in chorionic villi of normal placentas and complete hydatidiform moles. Gynecol Oncol. 1990;37:396–400.

    Article  CAS  PubMed  Google Scholar 

  34. Uzumaki H, Okabe T, Sasaki N, Hagiwara K, Takaku F, Tobita M, et al. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci U S A. 1989;86:9323–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao Y, Rong H, Chegini N. Expression and selective cellular localization of granulocyte-macrophage colony-stimulating factor (GM-CSF) and GM-CSF alpha and beta receptor messenger ribonucleic acid and protein in human ovarian tissue. Biol Reprod. 1995;53:923–30.

    Article  CAS  PubMed  Google Scholar 

  36. Jasper MJ, Brannstrom M, Olofsson JI, Petrucco OM, Mason H, Robertson SA, et al. Granulocyte-macrophage colony-stimulating factor: presence in human follicular fluid, protein secretion and mRNA expression by ovarian cells. Mol Hum Reprod. 1996;2:555–62.

    Article  CAS  PubMed  Google Scholar 

  37. Sjoblom C, Wikland M, Robertson SA. Granulocyte-macrophage colony-stimulating factor (GM-CSF) acts independently of the beta common subunit of the GM-CSF receptor to prevent inner cell mass apoptosis in human embryos. Biol Reprod. 2002;67:1817–23.

    Article  CAS  PubMed  Google Scholar 

  38. Agerholm I, Loft A, Hald F, Lemmen JG, Munding B, Sorensen PD, et al. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution. Reprod Biomed Online. 2010;20:477–84.

    Article  CAS  PubMed  Google Scholar 

  39. Sjoblom C, Roberts CT, Wikland M, Robertson SA. Granulocyte-macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology. 2005;146:2142–53.

    Article  PubMed  Google Scholar 

  40. Sjoblom C, Wikland M, Robertson SA. Granulocyte-macrophage colony-stimulating factor promotes human blastocyst development in vitro. Hum Reprod. 1999;14:3069–76.

    Article  CAS  PubMed  Google Scholar 

  41. Robertson SA. GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev. 2007;18:287–98.

    Article  CAS  PubMed  Google Scholar 

  42. Tevkin S, Lokshin V, Shishimorova M, Polumiskov V. The frequency of clinical pregnancy and implantation rate after cultivation of embryos in a medium with granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with preceding failed attempts of ART. Gynecol Endocrinol. 2014;30s1:9–12.

    Article  Google Scholar 

  43. Ziebe S, Loft A, Povlsen BB, Erb K, Agerholm I, Aasted M, et al. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil Steril. 2013;99:1600–9.

    Article  CAS  PubMed  Google Scholar 

  44. Capalbo A, Ottolini CS, Griffin DK, Ubaldi FM, Handyside AH, Rienzi L. Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertil Steril. 2016;105:807–14.

    Article  CAS  PubMed  Google Scholar 

  45. Gardner DK, Schoolcraft WB. In-vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon; 1999. p. 378–88.

    Google Scholar 

  46. Christopikou D, Tsorva E, Economou K, Shelley P, Davies S, Mastrominas M, et al. Polar body analysis by array comparative genomic hybridization accurately predicts aneuploidies of maternal meiotic origin in cleavage stage embryos of women of advanced maternal age. Hum Reprod. 2013;28:1426–34.

    Article  CAS  PubMed  Google Scholar 

  47. Tesarik J, Sousa M. More than 90% fertilization rates after intracytoplasmic sperm injection and artificial induction of oocyte activation with calcium ionophore. Fertil Steril. 1995;63:343–9.

    Article  CAS  PubMed  Google Scholar 

  48. Chi HJ, Koo JJ, Song SJ, Lee JY, Chang SS. Successful fertilization and pregnancy after intracytoplasmic sperm injection and oocyte activation with calcium ionophore in a normozoospermic patient with extremely low fertilization rates in intracytoplasmic sperm injection cycles. Fertil Steril. 2004;82:475–7.

    Article  PubMed  Google Scholar 

  49. Rybouchkin AV, Van der Straeten F, Quatacker J, De Sutter P, Dhont M. Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. Fertil Steril. 1997;68:1144–7.

    Article  CAS  PubMed  Google Scholar 

  50. van Blerkom J, Cohen J, Johnson M. A plea for caution and more research in the ‘experimental’ use of ionophores in ICSI. Reprod Biomed Online. 2015;30:323–4.

    Article  PubMed  Google Scholar 

  51. Thompson P. HFEA response to ‘A plea for caution and more research in the “experimental” use of ionophores in ICSI’. Reprod Biomed Online. 2015;31:829–30.

    Article  PubMed  Google Scholar 

  52. Aghajanpour S, Ghaedi K, Salamian A, Deemeh MR, Tavalaee M, Moshtaghian J, et al. Quantitative expression of phospholipase C zeta, as an index to assess fertilization potential of a semen sample. Hum Reprod. 2011;26:2950–6.

    Article  CAS  PubMed  Google Scholar 

  53. Heindryckx B, Van der Elst J, De Sutter P, Dhont M. Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod. 2005;20:2237–41.

    Article  CAS  PubMed  Google Scholar 

  54. Vanden Meerschaut F, D’Haeseleer E, Gysels H, Thienpont Y, Dewitte G, Heindryckx B, et al. Neonatal and neurodevelopmental outcome of children aged 3–10 years born following assisted oocyte activation. Reprod Biomed Online. 2014;28:54–63.

    Article  PubMed  Google Scholar 

  55. Miller N, Biron-Shental T, Sukenik-Halevy R, Klement AH, Sharony R, Berkovitz A. Oocyte activation by calcium ionophore and congenital birth defects: a retrospective cohort study. Fertil Steril. 2016;106:590–6.

  56. Trounson AO. The derivation and potential use of human embryonic stem cells. Reprod Fertil Dev. 2001;13:523–32.

    Article  CAS  PubMed  Google Scholar 

  57. Katz-Jaffe MG, Trounson AO, Cram DS. Mitotic errors in chromosome 21 of human preimplantation embryos are associated with non-viability. Mol Hum Reprod. 2004;10:143–7.

    Article  CAS  PubMed  Google Scholar 

  58. Katz-Jaffe MG, Trounson AO, Cram DS. Chromosome 21 mosaic human preimplantation embryos predominantly arise from diploid conceptions. Fertil Steril. 2005;84:634–43.

    Article  PubMed  Google Scholar 

  59. Mantikou E, Wong KM, Repping S, Mastenbroek S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim Biophys Acta. 2012;1822:1921–30.

  60. Hardy K, Winston RM, Handyside AH. Binucleate blastomeres in preimplantation human embryos in vitro: failure of cytokinesis during early cleavage. J Reprod Fertil. 1993;98:549–58.

    Article  CAS  PubMed  Google Scholar 

  61. Harrison RH, Kuo HC, Scriven PN, Handyside AH, Ogilvie CM. Lack of cell cycle checkpoints in human cleavage stage embryos revealed by a clonal pattern of chromosomal mosaicism analysed by sequential multicolour FISH. Zygote. 2000;8:217–24.

    Article  CAS  PubMed  Google Scholar 

  62. Ruangvutilert P, Delhanty JD, Serhal P, Simopoulou M, Rodeck CH, Harper JC. FISH analysis on day 5 post-insemination of human arrested and blastocyst stage embryos. Prenat Diagn. 2000;20:552–60.

    Article  CAS  PubMed  Google Scholar 

  63. Bielanska M, Tan SL, Ao A. High rate of mixoploidy among human blastocysts cultured in vitro. Fertil Steril. 2002;78:1248–53.

    Article  PubMed  Google Scholar 

  64. Clouston HJ, Herbert M, Fenwick J, Murdoch AP, Wolstenholme J. Cytogenetic analysis of human blastocysts. Prenat Diagn. 2002;22:1143–52.

    Article  PubMed  Google Scholar 

  65. Chatzimeletiou K, Morrison EE, Prapas N, Prapas Y, Handyside AH. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod. 2005;20:672–82.

    Article  PubMed  Google Scholar 

  66. Lutz EE. Preimplantation genetic diagnosis (PGD) according to medical ethics and medical law. J Turk Ger Gynecol Assoc. 2012;13:50–5.

    PubMed  PubMed Central  Google Scholar 

  67. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escribá MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98:1458–63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Christos Karamalegos for the help with statistical analysis and Ms. Maria Papadopoulou for collecting the patient consent forms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos A. Economou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

The study was approved by the institutional research ethics committee, and then it was submitted to and obtained authorization by the Hellenic National Authority of Medically Assisted Reproduction (authorization ref. 134/15), as required by national legislation for research use of human embryos not destined to embryo transfer.

Informed consent

All patients who donated oocytes and embryos to be included in the study signed consent forms, after receiving exhaustive information on the purpose of the research carried out, on the procedures to be used, on the possibility to withdraw their consent at any time up to the first actual use of each oocyte or embryo in an experiment, and on the legal and ethical obligation of the authors to destroy all embryos after completion of the experiments, without attempting to transfer them in vivo.

Additional information

Capsule The exposure of human unfertilized oocytes 18 h after ICSI to a combination of calcium ionophore A23187 and the GM-CSF cytokine can safely salvage the oocytes, resulting in the development of good-morphology, euploid blastocysts, with potential clinical use.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Economou, K.A., Christopikou, D., Tsorva, E. et al. The combination of calcium ionophore A23187 and GM-CSF can safely salvage aged human unfertilized oocytes after ICSI. J Assist Reprod Genet 34, 33–41 (2017). https://doi.org/10.1007/s10815-016-0823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0823-0

Keywords

Navigation