Skip to main content
Log in

Oxidative markers in cryopreservation medium from frozen-thawed embryos: a possible tool for improved embryo selection in in vitro fertilization?

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The present study evaluated the association between oxidative parameters in embryo cryopreservation medium and laboratory and clinical outcomes.

Methods

This prospective laboratory study was conducted in an IVF unit in a university-affiliated hospital with 91 IVF patients undergoing a frozen-thawed embryo transfer cycle. Following thawing, 50 μL of embryo cryopreservation medium was retrieved from each cryotube and tested by the thermochemiluminescence (TCL) assay. TCL amplitudes after 50 (H1), 150 (H2), and 280 s (H3) were recorded in counts per second (CPS) and the TCL ratio determined for comparison with implantation and pregnancy rates.

Results

A total of 194 embryos were transferred in 85 frozen-thaw cycles. Twenty-one pregnancies (24.7 %) occurred. Implantation and overall and clinical pregnancy rates were higher when the median TCL H1 amplitude was <32 CPS compared to ≥32 CPS (14.6 vs. 5.3 %, 37.5 vs. 17 %, 28.1 vs. 9.4 %, respectively). No pregnancies occurred when the H1 amplitude was ≥40 CPS. Logistic regression multivariate analysis found that only the median TCL H1 amplitude was associated with the occurrence of pregnancy (OR = 2.93, 95 % CI 1.065–8.08). The TCL ratio inversely correlated with the duration of embryo cryopreservation (r = −0.37).

Conclusions

The results indicate that thawed embryos may express oxidative processes in the cryopreservation medium, and higher oxidative levels are associated with lower implantation rates. These findings may aid in the improved selection of frozen-thawed embryos for IVF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trounson AO, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305:707–9.

    Article  CAS  PubMed  Google Scholar 

  2. Pattinson HA, Hignett M, Dunphy BC, Fleetham JA. Outcome of thaw embryo transfer after cryopreservation of all embryos in patients at risk of ovarian hyperstimulation syndrome. Fertil Steril. 1994;62:1192–6.

    Article  CAS  PubMed  Google Scholar 

  3. Wiener-Megnazi Z, Lahav-Baratz S, Rothschild E, Abramovici H, Dirnfeld M. Impact of cryopreservation and subsequent embryo transfer on the outcome of in vitro fertilization in patients at high risk for ovarian hyperstimulation syndrome. Fertil Steril. 2002;78:201–3.

    Article  PubMed  Google Scholar 

  4. Bedoschi G, Oktay K. Current approach to fertility preservation by embryo cryopreservation. Fertil Steril. 2013;99:1496–502.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong KM, Mastenbroek S, Repping S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil Steril. 2014;102(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  6. Roque M, Lattes K, Serra S, Solà I, Geber S, Carreras R, et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril. 2013;99:156–62.

    Article  PubMed  Google Scholar 

  7. Edgar DH, Bourne H, Speirs AL, McBain JC. A quantitative analysis of the impact of cryopreservation on the implantation potential of human early cleavage stage embryos. Hum Reprod. 1999;15:175–9.

    Article  Google Scholar 

  8. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17:385–91.

    Article  CAS  PubMed  Google Scholar 

  9. Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril. 2006;86:1608–15.

    Article  PubMed  Google Scholar 

  10. Gao D, Critserl JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41:187–96.

    Article  CAS  PubMed  Google Scholar 

  11. Shnizer S, Kagan T, Lanir A, Maor I, Reznick AZ. Modifications and oxidation of lipids and proteins in human serum detected by thermochemiluminescence. Luminescence. 2003;18:90–6.

    Article  CAS  PubMed  Google Scholar 

  12. Friedman K, Peleg E, Kagan T, Shnizer S, Rosenthal T. Oxidative stress in hypertensive, diabetic and diabetic hypertensive rates. Am J Hypertens. 2003;16:1049–52.

    Article  CAS  PubMed  Google Scholar 

  13. Sukhotnik I, Brod V, Lurie M, Rahat MA, Shnizer S, Lahat N, et al. The effect of 100% oxygen on intestinal preservation and recovery following ischemia-reperfusion injury in rats. Crit Care Med. 2009;37:1054–61.

    Article  CAS  PubMed  Google Scholar 

  14. Lissak A, Wiener-Megnazi Z, Reznick AZ, Shnizer S, Ishai D, Grach B, et al. Oxidative stress indices in seminal plasma, as measured by thermochemiluminescence assay correlate with sperm parameters. Fertil Steril. 2004;81:792–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick AZ, Ishai D, et al. Oxidative stress indices in follicular fluid as measured by thermochemiluminescence (TCL) assay correlate with outcome parameters in IVF. Fertil Steril. 2004;82:1171–6.

    Article  CAS  PubMed  Google Scholar 

  16. Wiener-Megnazi Z, Shiloh H, Avraham L, Lahav-Baratz S, Koifman M, Reznick AZ, et al. Oxidative parameters of embryo culture media may predict treatment outcome in in vitro fertilization: a novel applicable tool for improving embryo selection. Fertil Steril. 2011;95:979–84.

    Article  PubMed  Google Scholar 

  17. Al-Shawaf T, Yang D, Al-Magid Y, Seaton A, Iketubosin F, Craft I. Ultrasonic monitoring during replacement of frozen-thawed embryos in natural and hormone replacement cycles. Hum Reprod. 1993;8:2068–74.

    CAS  PubMed  Google Scholar 

  18. Muasher SJ, Kruithoff C, Simonetti S, Oehninger S, Acosta AA, Jones GS. Controlled preparation of the endometrium with exogenous steroids for the transfer of frozen-thawed pre-embryos in patients with anovulatory or irregular cycles. Hum Reprod. 1991;6:443–5.

    CAS  PubMed  Google Scholar 

  19. Cummins JM, Breen TM, Harrison KL, Shaw JM, Wilson LM, Hennessey JF. A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf. 1986;3:284–95.

    Article  CAS  PubMed  Google Scholar 

  20. Muldrew K, McGann LE. The osmotic rupture hypothesis of intracellular freezing injury. Biophys J. 1994;66:532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vreugdenhil PK, Belzer FO, Southard JH. Effect of cold storage on tissue and cellular glutathione. Cryobiology. 1991;28(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  22. Park JI. The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cervisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J Biol Chem. 1998;273:22921–8.

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee S, Gagnon C. Evidence for the production of oxygen free radicals during freezing/thawing of bull spermatozoa. Mol Reprod Dev. 2001;59:451–8.

    Article  CAS  PubMed  Google Scholar 

  24. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.

    Article  CAS  PubMed  Google Scholar 

  25. Gale SL, Burritt DJ, Tervit HR, Adams SL, McGowan LT. An investigation of oxidative stress and antioxidant biomarkers during Greenshell mussel (Perna canaliculus) oocyte cryopreservation. Theriogenology. 2014;1(82):779–89.

    Article  Google Scholar 

  26. Ahn HJ, Sohn IP, Kwon HC, Jo do H, Park YD, Min CK. Characteristics of the cell membrane fluidity, actin fibers, and mitochondrial dysfunctions of frozen-thawed two-cell mouse embryos. Mol Reprod Dev. 2002;61:466–76.

    Article  CAS  PubMed  Google Scholar 

  27. Wen B, Wang R, Cheng H, Hong S. Cytological and physiological changes in orthodox maize embryos during cryopreservation. Protoplasma. 2010;239:57–67.

    Article  PubMed  Google Scholar 

  28. Boonkusol D, Gal AB, Bodo S, Gorhony B, Kitiyanant Y, Dinnyes A. Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos. Mol Reprod Dev. 2006;73:700–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lane M. Addition of ascorbate during cryopreservation stimulated subsequent embryo development. Hum Reprod. 2002;17:2686–93.

    Article  CAS  PubMed  Google Scholar 

  30. Castillo-Martín M, Bonet S, Morató R, Yeste M. Supplementing culture and vitrification-warming media with L-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression. Cryobiology. 2014;68:451–8.

    Article  PubMed  Google Scholar 

  31. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;2:298–300.

    Article  Google Scholar 

  32. Tarin JJ. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod. 1996;2:717–24.

    Article  CAS  PubMed  Google Scholar 

  33. Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation and impairment of antioxidant enzymes in aging. Exp Biol Med. 2002;227:671–82.

    CAS  Google Scholar 

  34. Sohal RS, Mockett RG, Orr WC. Mechanism of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–86.

    Article  CAS  PubMed  Google Scholar 

  35. Valojerdi MR. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J Assist Reprod Genet. 2009;26:347–54.

    Article  Google Scholar 

  36. Van Landuyt L, Stoop D, Verheyen G, Verpoest W, Camus M, Van de Velde H, et al. Outcome of closed blastocyst vitrification in relation to blastocyst quality: evaluation of 759 warming cycles in a single-embryo transfer policy. Hum Reprod. 2011;26:527–34.

    Article  PubMed  Google Scholar 

  37. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7:CD002118.

    PubMed  Google Scholar 

  38. Sifer C, Sermondade N, Dupont C, Poncelet C, Cédrin-Durnerin I, Hugues JN, et al. [Outcome of embryo vitrification compared to slow freezing process at early cleavage stages. Report of the first French birth]. Gynecol Obstet Fertil. 2012;40:158–61.

    Article  CAS  PubMed  Google Scholar 

  39. Levron J, Leibovitz O, Brengauz M, Gitman H, Yerushalmi GM, Katorza E, et al. Cryopreservation of day 2–3 embryos by vitrification yields better outcome than slow freezing. Gynecol Endocrinol. 2014;30:202–4.

    Article  PubMed  Google Scholar 

  40. Kropp J, Salih SM, Khatib H. Expression of microRNAs in bovine and human pre-implantation embryo culture media. Front Genet. 2014;24(5):91.

    Google Scholar 

  41. Vergouw CG, Heymans MW, Hardarson T, Sfontouris IA, Economou KA, Ahlström A, et al. No evidence that embryo selection by near-infrared spectroscopy in addition to morphology is able to improve live birth rates: results from an individual patient data meta-analysis. Hum Reprod. 2014;29:455–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofnat Wiener-Megnazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Capsule

An oxidative parameter in embryo cryopreservation medium as measured by thermochemiluminescence assay was associated with pregnancy in a prospective study. These findings may provide a tool for better embryo selection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiener-Megnazi, Z., Lahav-Baratz, S., Blais, I. et al. Oxidative markers in cryopreservation medium from frozen-thawed embryos: a possible tool for improved embryo selection in in vitro fertilization?. J Assist Reprod Genet 33, 731–739 (2016). https://doi.org/10.1007/s10815-016-0692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0692-6

Keywords

Navigation