Skip to main content

Advertisement

Log in

Sperm morphological abnormalities visualised at high magnification predict embryonic development, from fertilisation to the blastocyst stage, in couples undergoing ICSI

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the predictive value of the motile sperm organelle morphology examination (MSOME) on embryo morphology.

Methods

The morphologies of 540 embryos obtained from 60 couples undergoing ICSI were evaluated from days 1 to 5 of development and were examined for associations with the percentages of morphologically normal paternal sperm and of the paternal sperm with large nuclear vacuoles (LNVs) as determined by MSOME.

Results

An increased percentage of LNV sperm was associated with increased odds of a zygote presenting with pronuclear abnormalities. It was also associated with decreased odds of (i) normal cleavage on days 2 and 3 of development, (ii) the presence of a high-quality embryo on day 3, (iii) the development of an embryo to the blastocyst stage, and (iv) an embryo possessing a normal trophectoderm and inner cell mass. The calculated areas under the curves differed for the embryos that did and did not develop to the blastocyst stage and for the high- and low-quality blastocysts. The optimal cut-off value for the percentage of LNV sperm that maximised proper blastocyst formation was ≤24.5 %, and the cut-off value that maximised blastocyst quality was ≤19.5 %.

Conclusions

These results suggest a very early onset of paternal influences on embryo development. The evaluation of the incidence of vacuoles by MSOME may significantly improve upon the prognostic information provided by conventional semen analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  CAS  PubMed  Google Scholar 

  2. Shoukir Y, Chardonnens D, Campana A, Sakkas D. Blastocyst development from supernumerary embryos after intracytoplasmic sperm injection: a paternal influence? Hum Reprod. 1998;13:1632–7.

    Article  CAS  PubMed  Google Scholar 

  3. Loutradi KE, Tarlatzis BC, Goulis DG, et al. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J Assist Reprod Genet. 2006;23:69–74.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  5. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 1994;38:36–42.

    Article  CAS  PubMed  Google Scholar 

  6. Miller JE, Smith TT. The effect of intracytoplasmic sperm injection and semen parameters on blastocyst development in vitro. Hum Reprod. 2001;16:918–24.

    Article  CAS  PubMed  Google Scholar 

  7. Van der Zwalmen P, Bertin-Segal G, Geerts L, Debauche C, Schoysman R. Sperm morphology and IVF pregnancy rate: comparison between Percoll gradient centrifugation and swim-up procedures. Hum Reprod. 1991;6:581–8.

    PubMed  Google Scholar 

  8. Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345:1067–8.

    Article  CAS  PubMed  Google Scholar 

  9. Berkovitz A, Eltes F, Ellenbogen A, Peer S, Feldberg D, Bartoov B. Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome? Hum Reprod. 2006;21:1787–90.

    Article  PubMed  Google Scholar 

  10. Garolla A, Fortini D, Menegazzo M, et al. High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod Biomed Online. 2008;17:610–6.

    Article  PubMed  Google Scholar 

  11. Boitrelle F, Ferfouri F, Petit JM, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26:1650–8.

    Article  CAS  PubMed  Google Scholar 

  12. Setti AS, Cortezzi SS, Figueira Rde C, et al. A chromosome 19 locus positively influences the number of retrieved oocytes during stimulated cycles in Brazilian women. J Assist Reprod Genet. 2012;29:443–9.

    Article  PubMed Central  PubMed  Google Scholar 

  13. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization. xiv; 2010. 271.

    Google Scholar 

  14. Berkovitz A, Eltes F, Lederman H, et al. How to improve IVF-ICSI outcome by sperm selection. Reprod Biomed Online. 2006;12:634–8.

    Article  CAS  PubMed  Google Scholar 

  15. Saidi R, Rives N, Gruel E, Mazurier S, Mousset-Simeon N, Mace B. Nouvelle classification du spermocytogramme a’ fort grossissement. Med Reprod Gyn Endo. 2008;10:315–24.

    Google Scholar 

  16. Perdrix A, Travers A, Chelli MH, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26:47–58.

    Article  CAS  PubMed  Google Scholar 

  17. Setti AS, de Almeida Ferreira Braga DP, Vingris L, de Cassia Savio Figueira R, Iaconelli Jr A, Borges Jr E. The prevalence of sperm with large nuclear vacuoles is a prognostic tool in the prediction of ICSI success. J Assist Reprod Genet. 2014;31:307–12.

    Article  PubMed  Google Scholar 

  18. Scott L, Alvero R, Leondires M, Miller B. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000;15:2394–403.

    Article  CAS  PubMed  Google Scholar 

  19. Tesarik J, Greco E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod. 1999;14:1318–23.

    Article  CAS  PubMed  Google Scholar 

  20. Alpha Scientists in Reproductive M, Embryology ESIGo. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Article  Google Scholar 

  21. De Vos A, Van De Velde H, Joris H, Verheyen G, Devroey P, Van Steirteghem A. Influence of individual sperm morphology on fertilization, embryo morphology, and pregnancy outcome of intracytoplasmic sperm injection. Fertil Steril. 2003;79:42–8.

    Article  PubMed  Google Scholar 

  22. Lundin K, Soderlund B, Hamberger L. The relationship between sperm morphology and rates of fertilization, pregnancy and spontaneous abortion in an in-vitro fertilization/intracytoplasmic sperm injection programme. Hum Reprod. 1997;12:2676–81.

    Article  CAS  PubMed  Google Scholar 

  23. Demir B, Arikan II, Bozdag G, Esinler I, Karakoc Sokmensuer L, Gunalp S. Effect of sperm morphology on clinical outcome parameters in ICSI cycles. Clin Exp Obstet Gynecol. 2012;39:144–6.

    CAS  PubMed  Google Scholar 

  24. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  CAS  PubMed  Google Scholar 

  25. Barroso G, Valdespin C, Vega E, et al. Developmental sperm contributions: fertilization and beyond. Fertil Steril. 2009;92:835–48.

    Article  CAS  PubMed  Google Scholar 

  26. Hinduja I, Baliga NB, Zaveri K. Correlation of human sperm centrosomal proteins with fertility. J Hum Reprod Sci. 2010;3:95–101.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schatten H. The mammalian centrosome and its functional significance. Histochem Cell Biol. 2008;129:667–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Asch R, Simerly C, Ord T, Ord VA, Schatten G. The stages at which human fertilization arrests: microtubule and chromosome configurations in inseminated oocytes which failed to complete fertilization and development in humans. Hum Reprod. 1995;10:1897–906.

    CAS  PubMed  Google Scholar 

  29. Terada Y, Nakamura S, Simerly C, et al. Centrosomal function assessment in human sperm using heterologous ICSI with rabbit eggs: a new male factor infertility assay. Mol Reprod Dev. 2004;67:360–5.

    Article  CAS  PubMed  Google Scholar 

  30. Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod. 2002;17:184–9.

    Article  PubMed  Google Scholar 

  31. Tesarik J, Kopecny V. Nucleic acid synthesis and development of human male pronucleus. J Reprod Fertil. 1989;86:549–58.

    Article  CAS  PubMed  Google Scholar 

  32. Ao A, Erickson RP, Winston RM, Handyside AH. Transcription of paternal Y-linked genes in the human zygote as early as the pronucleate stage. Zygote. 1994;2:281–7.

    Article  CAS  PubMed  Google Scholar 

  33. Tesarik J, Sousa M, Testart J. Human oocyte activation after intracytoplasmic sperm injection. Hum Reprod. 1994;9:511–8.

    Article  CAS  PubMed  Google Scholar 

  34. Sathananthan A, The paternal centrosome: its role in human embryonic development and infertility, in Current issues in Obstetrics and Gynaecology, S. Arulkumaran and S. Ng, editors. Oxford University Press: Singapore, 1996. p. 101–16.

  35. Ron-el R, Nachum H, Herman A, Golan A, Caspi E, Soffer Y. Delayed fertilization and poor embryonic development associated with impaired semen quality. Fertil Steril. 1991;55:338–44.

    CAS  PubMed  Google Scholar 

  36. Parinaud J, Mieusset R, Vieitez G, Labal B, Richoilley G. Influence of sperm parameters on embryo quality. Fertil Steril. 1993;60:888–92.

    CAS  PubMed  Google Scholar 

  37. Salumets A, Suikkari AM, Mols T, Soderstrom-Anttila V, Tuuri T. Influence of oocytes and spermatozoa on early embryonic development. Fertil Steril. 2002;78:1082–7.

    Article  PubMed  Google Scholar 

  38. Tesarik J. Paternal effects on cell division in the human preimplantation embryo. Reprod Biomed Online. 2005;10:370–5.

    Article  PubMed  Google Scholar 

  39. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.

    Article  CAS  PubMed  Google Scholar 

  40. Vingris L, Setti A, Braga D, Figueira R, Iaconelli Jr A, Borges Jr A. Motile sperm organelle morphology examination predicts blastocyst formation, implantation and miscarriage rates in couples undergoing ICSI. Hum Reprod. 2012;27:ii121–50.

    Google Scholar 

  41. Plastira K, Msaouel P, Angelopoulou R, et al. The effects of age on DNA fragmentation, chromatin packaging and conventional semen parameters in spermatozoa of oligoasthenoteratozoospermic patients. J Assist Reprod Genet. 2007;24:437–43.

    Article  PubMed Central  PubMed  Google Scholar 

  42. de Almeida Ferreira Braga DP, Setti AS, Figueira RC, et al. Sperm organelle morphologic abnormalities: contributing factors and effects on intracytoplasmic sperm injection cycles outcomes. Urology. 2011;78:786–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Borges Jr..

Additional information

Capsule The proportion of sperm with large nuclear vacuoles negatively influences zygote, embryo and blastocyst development and quality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setti, A.S., Braga, D.P.A.F., Vingris, L. et al. Sperm morphological abnormalities visualised at high magnification predict embryonic development, from fertilisation to the blastocyst stage, in couples undergoing ICSI. J Assist Reprod Genet 31, 1533–1539 (2014). https://doi.org/10.1007/s10815-014-0326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0326-9

Keywords

Navigation