Skip to main content
Log in

Increased frequency of micronuclei in lymphocytes of infertile males after exposure to gamma irradiation: a possible sign of genomic instability

  • genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Induced chromosomal instability and micronucleus (MN) formation in blood lymphocytes of infertile men in comparison with fertile men exposed to gamma radiation was investigated.

Methods

Blood samples of healthy and infertile donors were irradiated by 2 and 4 Gy Co-60 gamma-rays, then cultured in RPMI-1640 complete medium containing 1% phytoheamaglutinin (PHA) and incubated in a CO2 incubator. Cytochalasin-B was added to the cultures at a final concentration of 4 μg/ml. Finally, harvesting, slide making, and analysis were performed according to standard procedures.

Results

We observed a statistically significant difference between the frequencies of micronuclei in lymphocytes of infertile individuals, compared to healthy donors, before and after exposure to gamma rays. Although higher in azoospermia patients, the frequency of MN was not statistically different between infertile groups.

Conclusions

This study indicates that genomic instability in infertile men could probably contribute to the development of an impaired reproductive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thonneau P, Marchand S, Tallec A, Ferial ML, Ducot B, Lansac J, et al. Incidence and main causes of infertility in a resident population (1, 850, 000) of three French regions. Hum Reprod. 1991;6:811–6.

    PubMed  CAS  Google Scholar 

  2. Collodel G, Capitani S, Baccetti B, Pammolli A, Moretti E. Sperm aneuploidies and low progressive motility. Hum Reprod. 2007;22:1893–8.

    Article  PubMed  CAS  Google Scholar 

  3. Kirkpatrick G, Ferguson KA, Gao H, Tang S, Chow V, Yuen BH, et al. A comparison of sperm aneuploidy rates between infertile men with normal and abnormal karyotypes. Hum Reprod. 2008;23:1679–83.

    Article  PubMed  Google Scholar 

  4. Hassold TJ. The origin of aneuploidy in human. Hum Genet. 1985;70:7–11.

    Article  Google Scholar 

  5. Mozdarani H, Aghdaei F. Cytogenetic analysis of failed-fertilized oocytes from Iranian infertile women after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) procedures. Middle East Fertil Soci J. 2001;6:216–25.

    Google Scholar 

  6. Nili HA, Mozdarani H, Aleyasin A. Correlation of sperm DNA damage with protamine deficiency in Iranian subfertile men. Reprod Biomed Online. 2009;18:479–85.

    Article  PubMed  Google Scholar 

  7. Adele DeP, Nunziatina B, Rosario D, Enzo V, Calogero AE. Patients with abnormal sperm parameters has an increased sex chromosome aneuploidy rate in peripheral leukocytes. Hum Reprod. 2005;20:2153–6.

    Article  Google Scholar 

  8. Papachristou F, Lialiaris T, Touloupidis S, Kalaitzis C, Simopoulos C, Sofikitis N. Evidence of increased chromosomal instability in infertile males after exposure to mitomycin C and caffeine. Asian J Androl. 2006;8:199–204.

    Article  PubMed  CAS  Google Scholar 

  9. Virro RM, Larson-Cook LK, Evenson PD. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  10. Papachristou F, Simopoulou M, Touloupidis S. DNA damage and chromosomal aberrations in various types of male factor infertility. Fertil Steril. 2008;90:1774–81.

    Article  PubMed  Google Scholar 

  11. Trkova M, Kapras J, Bobkova K, Stankova J, Mejsnarova B. Increased micronuclei frequencies in couples with reproductive failure. Reprod Toxicol. 2000;14:331–5.

    Article  PubMed  CAS  Google Scholar 

  12. Bobadilla-Morales L, Cervantes-Luna MI, García-Cobián TA, Gómez-Meda BC, de la Torre CO, Corona-Rivera JR, et al. Chromosome instability in a patient with recurrent abortions. Genet Couns. 2009;20:153–9.

    PubMed  CAS  Google Scholar 

  13. Wushou P, Mon-shiung C, Jing-shiang T, Yi-ping H, Huang L. Follow-up in the micronucleus frequencies and its subsets in human population with chronic low-dose γ-irradiation exposure. Mutat Res. 1999;428:99–105.

    Article  Google Scholar 

  14. Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455:81–95.

    Article  PubMed  CAS  Google Scholar 

  15. World Health Organization. WHO Laboratory manual for the examination of human semen and sperm cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999. p. 27–44.

    Google Scholar 

  16. Mozdarani H, Salimi M. Numerical chromosome abnormalities in 8-cell embryos generated from gamma-irradiated male mice in the absence and presence of vitamin E. Int J Radiat Biol. 2006;82:817–22.

    Article  PubMed  CAS  Google Scholar 

  17. Mozdarani H, Nazari E. Cytogenetic damage in preimplantation mouse embryos generated after paternal and parental gamma-irradiation and the influence of vitamin C. Reproduction. 2009;137:35–43.

    Article  PubMed  CAS  Google Scholar 

  18. Colpi GM, Contalbi GF, Nerva F, Sagone P, Piediferro G. Testicular function following chemo–radiotherapy. Eur J Obstet Gynecol Reprod Biol. 2004;113S:S2–6.

    Article  Google Scholar 

  19. Hermann RM, Henkel K, Christiansen H, Vorwerk H, Hille A. Testicular dose and hormonal changes after radiotherapy of rectal cancer. Radiother Oncol. 2005;75:83–8.

    Article  PubMed  CAS  Google Scholar 

  20. Fenech M. In vitro micronucleus technique to predict chemosensitivity. Meth Mol Med. 2005;111:3–32.

    Google Scholar 

  21. Wyman C, Kanaar R. DNA double-strand break repair: all’s well that ends well. Annu Rev Genet. 2006;40:363–83.

    Article  PubMed  CAS  Google Scholar 

  22. Libber MR, Ma Y, Pannicke U, Schwars K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Biol. 2003;4:712–20.

    Article  Google Scholar 

  23. Zhang F, Claudia MB, Lupski CJR. Complex human chromosomal and genomic rearrangements. Trends Genet. 2009;25:298–307.

    Article  PubMed  Google Scholar 

  24. Bryant PE. The signal model a possible explanation for the conversion of DNA double strand breaks in to chromatid breaks. Int J Radiat Biol. 1998;73:243–51.

    Article  PubMed  CAS  Google Scholar 

  25. Bryant PE, Mozdarani H. Mechanisms underlying the conversion of DNA double strand breaks in to chromatid breaks. Int J Low Radiat. 2004;1:223–30.

    Article  CAS  Google Scholar 

  26. Babazadeh Z, Razavi Sh, Tavalaee M, Deemeh MR, Shahidi M, Nasr-Esfahani MH. Sperm DNA damage and its relation leukocyte DNA damage. Reprod Toxicol. 2010;29:120–4.

    Article  PubMed  CAS  Google Scholar 

  27. Falk M, Lukasova E, Kozubek S. Higher-order chromatin structure in DSB induction repair and misrepair. Mutat Res. 2010;704:88–100.

    Article  PubMed  CAS  Google Scholar 

  28. Mahowald GK, Baron JM, Sleckman BP. Collateral damage from antigen receptor gene diversification. Cell. 2008;135:1009–12.

    Article  PubMed  CAS  Google Scholar 

  29. Moskovtsev SI, Mullen JB, Lecker I, Jarvi K, White J, Roberts M. Frequency and severity of sperm DNA damage in patient with confirmed cases of male infertility of different etiology. Reprod Biomed. 2010;20:759–63.

    Article  CAS  Google Scholar 

  30. Papachristou F, Lialiaris T, Touloupidis S, Kalaitzis C, Simopoulos C, Shiraishi Y, et al. Effects of caffeine on chromosome aberrations and sister-chromatid exchanges induced by mitomycin C in BrdU-labeled human chromosomes. Mutat Res. 1979;62:139–49.

    Article  Google Scholar 

  31. Perrin A, Caer E, Oliver-Bonet M, Navarro J, Benet J, Amice V. DNA fragmentation and meiotic segregation in sperm of carriers of a chromosomal structural abnormality. Fertil Steril. 2009;92:583–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Department of Faculty of Medical Sciences, Tarbiat Modares University. The authors wish to express their sincere thanks to all patients and healthy individuals for blood donation and Ms Zahra Tizmaghz for irradiation of samples.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mozdarani.

Additional information

Capsule

Lymphocytes from infertile individuals showed higher frequency of micronuclei after gamma irradiation compared to controls indicating more susceptibility of infertile men to DNA damaging agents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghbeli-Nejad, S., Mozdarani, H. & Aleyasin, A. Increased frequency of micronuclei in lymphocytes of infertile males after exposure to gamma irradiation: a possible sign of genomic instability. J Assist Reprod Genet 29, 89–94 (2012). https://doi.org/10.1007/s10815-011-9550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9550-8

Keywords

Navigation