Skip to main content

Advertisement

Log in

Developmental potential of isolated blastomeres from early mouse embryos in the presence and absence of LIF and GM-CSF

  • Animal
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the developmental potential of isolated blastomeres in the presence and absence of leukemia inhibitory factor (LIF) and granulocyte–macrophage colony stimulating factor (GM-CSF).

Methods

The blastomeres of two (1/2) and eight cells (1/8) embryos were isolated and cultured in T6 medium in the presence and absence of LIF (1,000 IU/ml) and or GM-CSF (2 ng/ml) up to 120 h. The diameter and cell number of blastocysts were measured.

Results

The developmental rates of 1/2 isolated blastomeres developed to blastocysts stages in the presence and absence of LIF and GM-CSF were 45.80, 35.10 and 48.66, 41.66, respectively. The diameter of blastocysts was higher in GM-CSF group and total cell number of blastocyst in both treated groups was higher than control (P < 0.05). No 1/8 blastomeres developed to morula and blastocyst stages.

Conclusions

LIF and GM-CSF could improve the development of 1/2 isolated blastomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pierce KE, Michalopoulos J, Kiessling AA, Seibel MM, Zilberstein M. Preimplantation development of mouse and human embryos biopsied at cleavage stage using a modified displacement technique. Hum Reprod 1997;12:351–6.

    Article  PubMed  CAS  Google Scholar 

  2. Tao T, Niemann H. Cellular characterization of blastocysts derived from rabbit 4-,8- and 16 cell embryos and isolated blastomeres cultured in vitro. Hum Reprod 2000;15:881–9.

    Article  PubMed  CAS  Google Scholar 

  3. Modlinski JA, Ozil JP, Modlinska MK, Szarska A, Reed MA, Wagner TE, Karasiewicz J. Development of single mouse blastomeres enlarged to zygote size in conditions of nucleo-cytoplasmic synchrony. Zygote 2000;10:283–90.

    Google Scholar 

  4. Gao S, Sun W, Wen J, Guan Q, Zhang Q. Investigation on development potential of blastomeres isolated from 4-cell human embryos. Zhonghua Fu Chan Ke Za Zhi 2002;37:155–6.

    PubMed  Google Scholar 

  5. Eckert J, Tao T, Nieman H. Ratio of inner cell mass and trophoblastic cells in blastocysts derived from porcine 4- and 8-cell embryos and isolated blastomeres cultured in vitro in the presence or absence of protein and human leukemia inhibitory factor. Biol Reprod 1997;57:552–60.

    Article  PubMed  CAS  Google Scholar 

  6. Bielanska M, Tan SL, Ao A. Chromosomal information derived from single blastomeres isolated from cleavage-stage embryos and cultured in vitro. Fertil Steril 2003;79:1304–11.

    Article  PubMed  Google Scholar 

  7. Geber S, Sampaio M. Blastomere development after embryo biopsy: a new model to predict embryo development and to select for transfer. Hum Reprod 1999;14:782–6.

    Article  PubMed  CAS  Google Scholar 

  8. Rathjen PD, Seamark RF. Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos. J Reprod Fertil 1995;105:331–8.

    PubMed  Google Scholar 

  9. Tsai HD, Chang CC, Hsieh YY, Hsu LW, Chang SC, Lo HY. Effect of different concentrations of recombinant leukemia inhibitory factor on different development stage of mouse embryo in vitro. J Asist Reprod Genet 2000;17:352–5.

    Article  CAS  Google Scholar 

  10. Tsai HD, Chang CC, Hsieh YY, Lo HY, Hsu LW, Chang SC. Recombinant human leukemia inhibitory factor enhances the development of preimplantation mouse embryo in vitro. Fertil Steril 1999;71:722–5.

    Article  PubMed  CAS  Google Scholar 

  11. Mezhevikina LM, Fedorova VR, Kapralova IV, Fesenko EE. Increased survival of preimplantation mouse embryos in medium with recombinant cytokine LIF. Ontogenez 2006;37:55–62.

    PubMed  CAS  Google Scholar 

  12. Desai N, Kattal N, Abdelhafez FF, Szeptycki-Lawson J, Goldfarb J. Granulocyte–macrophage colony stimulating factor (GM-CSF) and co-culture can affect post-thaw development and apoptosis in cryopreserved embryos. J Assist Reprod Genet 2007;24:215–22.

    Article  PubMed  Google Scholar 

  13. Papayannis M, Eyheremendy V, Sanjurjo C, Blaquier J, Raffo FG. Effect of granulocyte–macrophage colony stimulating factor on growth, resistance to freezing and thawing and re-expansion of murine blastocyts. Reprod Biomed Online 2007;14:96–101.

    PubMed  CAS  Google Scholar 

  14. Cui XS, Lee JY, Choi SH, Kwon MS, Kim T, Kim NH. Mouse granulocyte–macrophage colony-stimulating factor enhances viability of porcine embryos in defined conditions. Anim Reprod Sci 2004;84:169–77.

    Article  PubMed  CAS  Google Scholar 

  15. Behr B, Mooney S, Wen Y, Polan ML, Wang H. Preliminary experience with low concentration of granulocyte–macrophage colony-stimulating factor: a potential regulator in preimplantation mouse embryo development and apoptosis. J Assist Reprod Genet 2005;22:25–32.

    Article  PubMed  Google Scholar 

  16. Sheikholslami B, Salehnia M, Rezazadeh M. The effect of different concentration of GM-CSF on the development of preimplantation embryos in mice. I J Reprod Med 2004;2:12–14.

    Google Scholar 

  17. Oshima K, Watanabe H, Yoshihara K, Kojima T, Dochi O, Takenouchi N, Fukushima M, Komatsu M. Gene expression of leukemia inhibitory factor (LIF) and macrophage colony stimulating factor (M-CSF) in bovine endometrium during early pregnancy. Theriogenology 2003;60:1217–26.

    Article  PubMed  CAS  Google Scholar 

  18. Giacomini G, Tabibzadeh SS, Satyaswaroop PG, Bonsi L, Vitale L, Bagnara GP, Strippoli P, Jasonni VM. Epithelial cells are the major source of biologically active granulocyte macrophage colony-stimulating factor in human endometrium. Hum Reprod 1995;10:3259–63.

    PubMed  CAS  Google Scholar 

  19. Robertson SA. GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev 2007;18:287–98.

    Article  PubMed  CAS  Google Scholar 

  20. Cheung LP, Leung HY, Bongso A. Effect of supplementation of leukemia inhibitory factor and epidermal growth factor on murine embryonic development in vitro, implantation, and outcome of offspring. Fertil Steril 2003;80:727–35.

    Article  PubMed  Google Scholar 

  21. Cai LQ, Cao YJ, Duan EK. Effects of leukemia inhibitory factor on embryo implantation in the mouse. Cytokine 2000;12:1676–82.

    Article  PubMed  CAS  Google Scholar 

  22. Vogiagis D, Salamonsen LA. The role of leukemia inhibitory factor in the establishment of pregnancy. J Endocrinol 1999;160:181–90.

    Article  PubMed  CAS  Google Scholar 

  23. Ruef C, Coleman DL. Granulocyte–macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness. Rev Infect Dis 1990;12:41–62.

    PubMed  CAS  Google Scholar 

  24. Zhao Y, Chegini N. Human fallopian tube expresses granulocyte–macrophage colony-stimulating factor (GM-CSF) and GM-CSF alpha and beta receptors and contains immunoreactive GM-CSF protein. J Clin Endocrinol Metab 1994;79:662–5.

    Article  PubMed  CAS  Google Scholar 

  25. Robertson SA, Mayrhofer G, Seamark RF. Uterine epithelial cells synthesize granulocyte–macrophage colony-stimulating factor and interleukin-6 in pregnant and non-pregnant mice. Biol Reprod 1992;46:1069–79.

    Article  PubMed  CAS  Google Scholar 

  26. de Moraes AA, Paula-Lopes FF, Chegini N, Hansen PJ. Localization of granulocyte–macrophage colony-stimulating factor in the bovine reproductive tract. J Reprod Immunol 1999;42:135–45.

    Article  PubMed  Google Scholar 

  27. Thouas GA, Korfiatis NA, Frencn AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biol Med Online 2001;3:25–9.

    Google Scholar 

  28. Sheikholslami B, Salehnia M, Rezazadeh M. Effect of granolocyte macrophage colony stimulating factor on the development of two cell mouse embryo. Yakhteh Med J 2005;7:25–8.

    Google Scholar 

  29. Karagenc L, Lane M, Gardner DK. Granulocyte–macrophage colony-stimulating factor stimulates mouse blastocyst inner cell mass development only when media lack human serum albumin. Reprod Biomed Online 2005;10:511–8.

    Article  PubMed  CAS  Google Scholar 

  30. Sjoblom C, Wikland M, Robertson SA. Granulocyte–macrophage colony-stimulating factor (GM-CSF) acts independently of the β common subunit of the GM-CSF receptor to prevent inner cell mass apoptosis in human embryos. Biol Reprod 2002;67:1817–23.

    Article  PubMed  CAS  Google Scholar 

  31. Fujikawa Y, Sabokbar A, Neale SD, Itonaga I, Torisu T, Athanasou NA. The effect of macrophage-colony stimulating factor and other humoral factors (interleukin-1, -3, -6, and -11, tumor necrosis factor-alpha, and granulocyte macrophage-colony stimulating factor) on human osteoclast formation from circulating cells. Bone 2001;28:261–7.

    Article  PubMed  CAS  Google Scholar 

  32. Cianfarani F, Tommasi R, Failla CM, Viviano MT, Annessi G, Papi M, Zambruno G, Odorisio T. Granulocyte/macrophage colony-stimulating factor treatment of human chronic ulcers promotes angiogenesis associated with de novo vascular endothelial growth factor transcription in the ulcer bed. Br J Dermatol 2006;154:34–41.

    Article  PubMed  CAS  Google Scholar 

  33. Desai N, Kattal N, AbdelHafez FF, Szeptycki-Lawson J, Goldfarb J. Granulocyte–macrophage colony stimulating factor (GM-CSF) and co-culture can affect post-thaw development and apoptosis in cryopreserved embryos. J Assist Reprod Genet 2007;24:215–22.

    Article  PubMed  Google Scholar 

  34. Drake BL, Head JR. GM-CSF and CSF-1 stimulate DNA synthesis but not cell proliferation in short-term cultures of mid-gestation murine trophoblast. J Reprod Immunol 1994;26:41–56.

    Article  PubMed  CAS  Google Scholar 

  35. Ponsa M, Noques C, Vidal F, Eqozcue J. Scanning electron microscope (SEM) study of mouse embryos obtained from isolated blastomeres. J In Vitro Fertil Embryo Transf 1991;8:279–85.

    Article  CAS  Google Scholar 

  36. Dunglison GF, Barlow DH, Sargent IL. Leukemia inhibitory factor significantly enhances the blastocyst formation rates of human embryos cultured in serum-free medium. Hum Reprod 1996;11:191–6.

    PubMed  CAS  Google Scholar 

  37. Tarkowski AK, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 1967;36:283–90.

    Google Scholar 

  38. Wilton IJ, Trounson AO. Biopsy of preimplantation mouse embryos: development of micromanipulated embryos and proliferation of single blastomeres in vitro. Biol Reprod 1989;40:145–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Miss Ebrahimi for photographic art work and Mr Pourbyranvand for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojdeh Salehnia.

Additional information

Capsule GM-CSF improved the developmental potential and the quality of isolated blastomeres derived from mouse two cells embryo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikholslami, B., Salehnia, M., Valojerdi, M.R. et al. Developmental potential of isolated blastomeres from early mouse embryos in the presence and absence of LIF and GM-CSF. J Assist Reprod Genet 25, 7–12 (2008). https://doi.org/10.1007/s10815-007-9191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-007-9191-0

Keywords

Navigation