Skip to main content

Advertisement

Log in

Effects of Coculture With Immune Cells on the Developmental Competence of Mouse Preimplantation Embryos in Vitro and in Utero

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to establish a coculture system using immune cells as well as an in vitro model for inflammatory conditioning using RAW 264.7 mouse macrophages activated by lipopolysaccharide. The direct and indirect coculture systems were applied to evaluate the influence of embryo-to-cell direct or indirect secretory molecules from the cocultured cells. Blastulation rate in vitro (94.6% vs 76.9%, P < .05) and implantation rate in utero (43.3% vs 17.6%, P < .01) were significantly increased in direct coculture with activated RAW 264.7 cells compared to control. We also found the embryotrophic effects in vitro in the indirect coculture system. Our results indicate that coculture of mouse preimplantation embryos with immune cells could improve the developmental competence in vitro and in utero. Taken together, RAW 264.7 cells secret embryotrophic molecules, and it suggests the valuable insights that immune cells could improve in vitro culture conditions of preimplantation embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu J, Cheung TM, Chan ST, Ho PC, Yeung WS. Human oviductal cells reduce the incidence of apoptosis in cocultured mouse embryos. Fertil Steril. 2000;74(6):1215–1219.

    Article  CAS  PubMed  Google Scholar 

  2. Xu JS, Chan ST, Lee WW, Lee KF, Yeung WS. Differential growth, cell proliferation, and apoptosis of mouse embryo in various culture media and in coculture. Mol Reprod Dev. 2004;68(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  3. Juneja SC, Pfeifer TL, Tang XM, Williams RS, Chegini N. Modulation of mouse sperm-egg interaction, early embryonic development and trophoblastic outgrowth by activated and unactivated macrophages. Endocrine. 1995;3(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  4. Honda R, Matsuura K, Fukumatsu Y, Kawano T, Okamura H. Invitro enhancement of mouse embryonic development by co-culture with peritoneal macrophages. Hum Reprod. 1994;9(4):692–696.

    Article  CAS  PubMed  Google Scholar 

  5. Check JH, Arwitz M, Gross J, Szekeres-Bartho J, Wu CH. Evidence that the expression of progesterone-induced blocking factor by maternal T-lymphocytes is positively correlated with conception. Am J Reprod Immunol. 1997;38(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gallinelli A, Roncaglia R, Matteo ML, Ciaccio I, Volpe A, Facchinetti F. Immunological changes and stress are associated with different implantation rates in patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2001;76(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  7. O’Leary S, Lloyd ML, Shellam GR, Robertson SA. Immunization with recombinant murine cytomegalovirus expressing murine zona pellucida 3 causes permanent infertility in BALB/c mice due to follicle depletion and ovulation failure. Biol Reprod. 2008;79(5):849–860.

    Article  PubMed  CAS  Google Scholar 

  8. Smolikova K, Mlynarcikova A, Scsukova S. Role of interleukins in the regulation of ovarian functions. Endocr Regul. 2012;46(4):237–253.

    Article  CAS  PubMed  Google Scholar 

  9. Zenclussen ML, Jensen F, Rebelo S, El-Mousleh T, Casalis PA, Zenclussen AC. Heme oxygenase-1 expression in the ovary dictates a proper oocyte ovulation, fertilization, and corpora lutea maintenance. Am J Reprod Immunol. 2012;67(5):376–382.

    Article  CAS  PubMed  Google Scholar 

  10. Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest. 2013;123(8):3472–3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McMaster MT, Dey SK, Andrews GK. Association of monocytes and neutrophils with early events of blastocyst implantation in mice. J Reprod Fertil. 1993;99(2):561–569.

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal YK, Jaiswal MK, Agrawal V, Chaturvedi MM. Bacterial endotoxin (LPS)-induced DNA damage in preimplanting embryonic and uterine cells inhibits implantation. Fertil Steril. 2009;91(5 suppl):2095–2103.

    Article  CAS  PubMed  Google Scholar 

  13. Deb K, Chaturvedi MM, Jaiswal YK. A ‘minimum dose’ of lipopolysaccharide required for implantation failure: assessment of its effect on the maternal reproductive organs and interleukin-1alpha expression in the mouse. Reproduction. 2004;128(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  14. Agrawal V, Jaiswal MK, Jaiswal YK. Lipopolysaccharide induces alterations in ovaries and serum level of progesterone and 17betaestradiol in the mouse. Fertil Steril. 2011;95(4):1471–1474.

    Article  CAS  PubMed  Google Scholar 

  15. Jaiswal YK, Chaturvedi MM, Deb K. Effect of bacterial endotoxins on superovulated mouse embryos in vivo: is CSF-1 involved in endotoxin-induced pregnancy loss? Infect Dis Obstet Gynecol. 2006;2006:32050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Deb K, Chaturvedi MM, Jaiswal YK. Gram-negative bacterial LPS induced poor uterine receptivity and implantation failure in mouse: alterations in IL-1beta expression in the preimplantation embryo and uterine horns. Infect Dis Obstet Gynecol. 2005;13(3):125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deb K, Chaturvedi MM, Jaiswal YK. Comprehending the role of LPS in Gram-negative bacterial vaginosis: ogling into the causes of unfulfilled child-wish. Arch Gynecol Obstet. 2004;270(3):133–146.

    Article  PubMed  Google Scholar 

  18. Taylor CC, Terranova PF. Lipopolysaccharide inhibits in vitro luteinizing hormone-stimulated rat ovarian granulosa cell estradiol but not progesterone secretion. Biol Reprod. 1996;54(6):1390–1396.

    Article  CAS  PubMed  Google Scholar 

  19. Agrawal V, Jaiswal MK, Jaiswal YK. Lipopolysaccharide-induced modulation in the expression of progesterone receptor and estradiol receptor leads to early pregnancy loss in mouse. Zygote. 2013;21(4):337–344.

    Article  CAS  PubMed  Google Scholar 

  20. Jaiswal MK, Agrawal V, Jaiswal YK. Lipopolysaccharide drives alternation of heat shock proteins and induces failure of blastocyst implantation in mouse. Biol Reprod. 2013;88(6):162.

    Article  PubMed  Google Scholar 

  21. Franzen B, Hirano T, Okuzawa K, et al. Sample preparation of human tumors prior to two-dimensional electrophoresis of proteins. Electrophoresis. 1995;16(7):1087–1089.

    Article  CAS  PubMed  Google Scholar 

  22. Reymond MA, Sanchez JC, Schneider C, et al. Specific sample preparation in colorectal cancer. Electrophoresis. 1997;18(3–4):622–624.

    Article  CAS  PubMed  Google Scholar 

  23. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–1158.

    Article  CAS  PubMed  Google Scholar 

  24. Neuber E, Rinaudo P, Trimarchi JR, Sakkas D. Sequential assessment of individually cultured human embryos as an indicator of subsequent good quality blastocyst development. Hum Reprod. 2003;18(6):1307–1312.

    Article  CAS  PubMed  Google Scholar 

  25. Fouladi-Nashta AA, Alberio R, Kafi M, Nicholas B, Campbell KH, Webb R. Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod Biomed Online. 2005;10(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  26. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online. 2001;3(1):25–29.

    Article  PubMed  Google Scholar 

  27. Xie H, Tranguch S, Jia X, et al. Inactivation of nuclear Wnt-betacatenin signaling limits blastocyst competency for implantation. Development. 2008;135(4):717–727.

    Article  CAS  PubMed  Google Scholar 

  28. Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest. 2010;120(3):803–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bongso A, Fong CY. The effect of coculture on human zygote development. Curr Opin Obstet Gynecol. 1993;5(5):585–593.

    Article  CAS  PubMed  Google Scholar 

  30. Joo BS, Kim MK, Na YJ, Moon HS, Lee KS, Kim HD. The mechanism of action of coculture on embryo development in the mouse model: direct embryo-to-cell contact and the removal of deleterious components. Fertil Steril. 2001;75(1):193–199.

    Article  CAS  PubMed  Google Scholar 

  31. Bongso A, Ng SC, Fong CY, et al. Improved pregnancy rate after transfer of embryos grown in human fallopian tubal cell coculture. Fertil Steril. 1992;58(3):569–574.

    Article  CAS  PubMed  Google Scholar 

  32. Saxena RK, Vallyathan V, Lewis DM. Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J Biosci. 2003;28(1):129–134.

    Article  CAS  PubMed  Google Scholar 

  33. Han JM, Jin YY, Kim HY, Park KH, Lee WS, Jeong TS. Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-kappaB and mitogen-activated protein kinases in RAW264.7 cells. Biol Pharm Bull. 2010;33(6):1019–1023.

    Article  CAS  PubMed  Google Scholar 

  34. Bongso A FC, Soon-Chye N, Sathananthan H. Human ampullary cocultures for blastocyst transfer in assisted reproduction. Ann Acad Med Singarpore. 1992;21(4):571–575.

    Google Scholar 

  35. Bongso A, Soon-Chye N, Sathananthan H, Lian NP, Rauff M, Ratnam S. Improved quality of human embryos when co-cultured with human ampullary cells. Hum Reprod. 1989;4(6):706–713.

    Article  CAS  PubMed  Google Scholar 

  36. Ou DB, He Y, Chen R, et al. Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes. J Cell Biochem. 2011;112(12):3555–3562.

    Article  CAS  PubMed  Google Scholar 

  37. Geissler M, Faissner A. A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays. J Neurosci Methods. 2012;204(2):262–272.

    Article  PubMed  Google Scholar 

  38. Desai N, Ludgin J, Goldberg J, Falcone T. Development of a xeno-free non-contact co-culture system for derivation and maintenance of embryonic stem cells using a novel human endometrial cell line. J Assist Reprod Genet. 2013;30(5):609–615.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barboni B, Curini V, Russo V, et al. Indirect co-culture with tendons or tenocytes can program amniotic epithelial cells towards stepwise tenogenic differentiation. PLoS One. 2012;7(2):e30974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture [published online February 3, 2014]. J Tissue Eng Regen Med. 2014.

  41. Schweizer A, Feige U, Fontana A, Muller K, Dinarello CA. Interleukin-1 enhances pain reflexes. Mediation through increased prostaglandin E2 levels. Agents Actions. 1988;25(3–4):246–251.

    Article  CAS  PubMed  Google Scholar 

  42. Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol. 2009;297(5):C1228–C1235.

    Article  CAS  PubMed  Google Scholar 

  43. Shen XH, Cui XS, Lee SH, Kim NH. Interleukin-6 enhances porcine parthenote development in vitro, through the IL-6/Stat3 signaling pathway. J Reprod Dev. 2012;58(4):453–460.

    Article  CAS  PubMed  Google Scholar 

  44. Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, Rimbach G. Anti-inflammatory potential of allyl-isothiocyanate–role of Nrf2, NF-(kappa) B and microRNA-155. J Cell Mol Med. 2012;16(4):836–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen Q, Wang H, Liu Y, et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS One. 2012;7(8):e42971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galliano D, Pellicer A. MicroRNA and implantation. Fertil Steril. 2014;101(6):1531–1544.

    Article  CAS  PubMed  Google Scholar 

  47. Eckert J, Niemann H. mRNA expression of leukaemia inhibitory factor (LIF) and its receptor subunits glycoprotein 130 and LIF-receptor-beta in bovine embryos derived in vitro or in vivo. Mol Hum Reprod. 1998;4(10):957–965.

    Article  CAS  PubMed  Google Scholar 

  48. Racowsky C CC, Nureddin A, Pan Y, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6(3):323–331.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hyun Jun PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, J., Kim, S.H. et al. Effects of Coculture With Immune Cells on the Developmental Competence of Mouse Preimplantation Embryos in Vitro and in Utero. Reprod. Sci. 22, 1252–1261 (2015). https://doi.org/10.1177/1933719115574342

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115574342

Keywords

Navigation