Skip to main content
Log in

Rapid Detection of Heavy Metal Ions Co3+, Cu2+, Ni2+, and Zn2+ in Wastewater By Pyrimidine–Thiourea Ligand

  • Published:
Journal of Applied Spectroscopy Aims and scope

Rapid detection of trace heavy metal ions in water is of great relevance to the environment and human health in the future. With pyrimidine as the parent structure, the water-soluble thiourea group is skillfully introduced to form a symmetric framework, thus firmly capturing the heavy metal ions in the water. The responsiveness of heavy metal ions in water was observed by UV-fluorescence spectroscopy. Especially with Co(NO3)2, Cu(NO3)2, Ni(NO3)2, and Zn(NO3)2, the response changes are most significant. The rapid response changes between them and trace heavy metal ions in water were intuitively observed under sunlight and fluorescence irradiation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Ruprecht, S. C. Birrer, and I. L. Turner, Water Res., 200, Article ID 117206 (2021), doi: https://doi.org/10.1016/j.watres.2021.117206.

  2. A. Demcakova, B. Sera, and M. Sery, Fresenius Environ. Bull., 30 (2A), 2045–2052 (2021).

    Google Scholar 

  3. A. Pratush, A. Kumar, and Z. Hu, Int. Microbiology, 21, No. 3, 97–106 (2018), doi: https://doi.org/10.1007/s10123-018-0012-3.

    Article  Google Scholar 

  4. T. Ohtani, N. Uematsu, and M. Fukami, Water, Air, Soil Poll., 130, 751–756 (2001).

    Article  Google Scholar 

  5. D. Liu, J. Wang, H. Yu, H. Gao, and W. Xu, Environ. Sci. Eur., 33, No. 1, 42 (2021), doi: https://doi.org/10.1186/s12302-021-00487-x.

    Article  Google Scholar 

  6. J. Jin, J. Sun, K. Lv, X. Huang, J. Wang, and Jia Liu, J. Mol. Liq., 334, Article ID 116087 (2021), doi: https://doi.org/10.1016/j.molliq.2021.116087.

  7. M. Javed and N. Usmani, Proc. National Academy of Sciences, India, Section B: Biological Sciences, 89, No. 2, 389– 403 (2019), doi: https://doi.org/10.1007/s40011-017-0875-7.

  8. N. A. El-Ghazaly, E. H. Abdel-Aziz, and A. El-Gawaher, Egyp. J. Aquatic. Res., 32, No. 1, 298–315 (2006).

    Google Scholar 

  9. J. Patwa and S. J. S. Flora, Int. J. Mol. Sci., 21, No. 11, 3862 (2020), doi: https://doi.org/10.3390/ijms21113862.

    Article  Google Scholar 

  10. Z. Fu and S. Xi, Tox. Mech. Methods, 30 (3), 167–176 (2020), doi: https://doi.org/10.1080/15376516.2019.1701594.

    Article  Google Scholar 

  11. A. T. Jan, M. Azam, and R. Mohd, Int. J. Mol. Sci., 16, No. 12, 29592–29630 (2015), doi: https://doi.org/10.3390/ijms161226183.

    Article  Google Scholar 

  12. X. Zeng, X. Xu, Boezen, and X. Huo, Chemosphere, 148, 408–415(2016).

    Article  ADS  Google Scholar 

  13. M. Zalewska, A. Gawin, M. Sciskalska, and H. Milnerowicz, Int. J. Environ. Anal. Chem., 94, No. 14–15, 1422–1434 (2014), doi: https://doi.org/10.1080/03067319.2014.962530.

    Article  Google Scholar 

  14. M. Deng, Y. Zhu, K. Shao, and J. Shen, J. Environ. Manag., 260, Article ID 110092 (2020), doi: https://doi.org/10.1016/j.jenvman.2020.110092.

  15. J. Zhang, Y. Wang, and Q. Zhou, J. Soi. Sediments, 16, No. 2, 634–644 (2016), doi: https://doi.org/10.1007/s11368-015-1225-0.

    Article  Google Scholar 

  16. M. Babu, D. H. Dwivedi, Y. R. Ram, and M. L. Meena, Afr. J. Agri. Res., 8, No. 22, 2765–2768 (2013), doi: https://doi.org/10.5897/AJAR12.1312.

    Article  Google Scholar 

  17. X. Liu, Q. Song, Y. Tang, W. Li, and F. Wang, Sci. Total. Environ., 463–464, 530–540 (2013), doi: https://doi.org/10.1016/j.scitotenv.2013.06.064.

    Article  ADS  Google Scholar 

  18. M. D'Emilio, R. Caggiano, M. Macchiato, M. Ragosta, and S. Sabia, Environ. Monito. Assess., 185, No. 7, 5951–5964 (2013), doi: https://doi.org/10.1007/s10661-012-2997-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 314, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jin, F. Rapid Detection of Heavy Metal Ions Co3+, Cu2+, Ni2+, and Zn2+ in Wastewater By Pyrimidine–Thiourea Ligand. J Appl Spectrosc 91, 428–433 (2024). https://doi.org/10.1007/s10812-024-01737-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01737-5

Keywords

Navigation