Skip to main content
Log in

A Study of the Thermal Degradation of Amoxicillin Trihydrate Using Raman Spectroscopy and High-Performance Liquid Chromatography

  • Published:
Journal of Applied Spectroscopy Aims and scope

High-performance liquid chromatography (HPLC) and Raman spectroscopy have been used to study the thermal degradation of amoxicillin trihydrate. Heating this compound at 60°C for 6 h led to an increase in the impurity contents, each not exceeding 1%. HPLC and Raman spectroscopy can be used to evaluate the quality of an amoxicillin sample obtained after thermal degradation at 80°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stability and Suitability Periods of Drug (OFS.1.1.0009.18). XIV State Pharmacopeia of the Russian Federation [in Russian], Vol. 1, Moscow (2018), pp. 208–260.

  2. Storage of Drugs (OFS.1.1.0010.18). XIV State Pharmacopeia of the Russian Federation [in Russian], Vol. 1, Moscow (2018), pp. 261–271.

  3. Pharmaceutical Substances. (OFS.1.10006.15). XIV State Pharmacopeia of the Russian Federation [in Russian], Vol. 1, Moscow (2018), pp. 176–184.

  4. S. Su, W. Guo, C. Yi, Y. Leng, and Z. Ma, Ultrasonics Sonochem., 19, No. 3, 469–474 (2012).

    Article  Google Scholar 

  5. L. Gozlan, A. Rotstein, and D. Avisar, Chemosphere, 91, No. 7, 985–992 (2013).

    Article  ADS  Google Scholar 

  6. A. G. Trovo, R. F. P. Nogueira, and A. Aguera, Water Res., 45, No. 3, 469–474 (2012).

    Google Scholar 

  7. R. Mendez, M. T. Alemany, C. Jurado, and J. Martin, Drug Develop. Ind. Pharm., 15, No. 8, 1263–1274 (1989).

    Google Scholar 

  8. M. Qutob, F. Shakeel, P. Alam, S. Alshehri, M. M. Ghoneim, and M. Rafatullah, Einviron. Res., Article ID 113833 (2022).

  9. F. Javid, T. N. Ang, D. Hanning, D. Svirskis, R. Burrell, M. Taylor, and S. Baroutian, J. Cleaner Prod., Article ID 129330 (2021).

  10. R. R. Galeev, D. A. Semenov, E. V. Galeeva, T. S. Falaleeva, I. R. Aryslanov, A. A. Saveliev, and R. R. Davletshin, J. Pharm. Biomed. Analysis, 163, 9–16 (2019).

    Article  Google Scholar 

  11. R. R. Galeev, A. A. Saveliev, E. V. Galeeva, T. S. Falaleeva, I. R. Aryslanov, D. A. Semanov, and R. R. Davletshin, J. Raman Spectrosc., 50, No. 10, 1614–1623 (2019).

    Article  ADS  Google Scholar 

  12. A. A. Saveliev, E. V. Galeeva, D A. Semanov, R. R. Galeev, I. R. Aryslanov, T. S. Falaleeva, and R. R. Davletshin, J. Raman Spectrosc., 53, No. 2, 247–255 (2021).

    Article  ADS  Google Scholar 

  13. R. P. Elander, Appl. Microbiol. Biotech., 61, Nos. 5–6, 385–392 (2003).

    Article  Google Scholar 

  14. World Health Organization. Make Every Mother and Child Count: The World Health Report, World Health Organization (2005).

  15. S. P. Kaur, R. Rao, and S. Nanda, Int. J. Pharm. Pharm. Sci., 3, No. 3, 7–30 (2011).

    Google Scholar 

  16. R. N. Brogden, R. C. Heel, T. M. Speight, and G. S. Avery, Drugs, 18, No. 3, 169–184 (1979).

    Article  Google Scholar 

  17. K. Bush, β-Lactam Antibiotics: Penicillin and Other β-Lactam Antibiotics. Antibiotic and Chemotherapy: AntiInfective Agents and Their Use in Therapy, Churchill Livingstone, Philadelphia (2003), pp. 224–278.

  18. K. Abo El-Sooud, Y. H. Al-Tarazi, and M. M. Al-Bataineh, Vet. Res. Commun., 28, No. 7, 599–607 (2004).

  19. R. C. Gordon, C. Regamey, and W. M. M. Kirby, Antimicrob. Agents Chemother., 1, No. 6, 504–507 (1972).

    Article  Google Scholar 

  20. C. M. Nolan, E. G. Chalhub, D. G. Nash, and T. Yamauchi, Antimicrob. Agents Chemother., 16, No. 2, 171–175 (1979).

    Article  Google Scholar 

  21. H. C. Neu, J. Infect. Dis., 129, No. 2, 5123–5131 (1974).

    Google Scholar 

  22. Y. Liu, K. Zhu, J. Wang, X. Huang, G. Wang, C. Li, and S. Ding, J. Chromatogr. B, 1008, 74–80 (2016).

    Article  Google Scholar 

  23. V. Matozzo, M. Battistara, I. Marisa, V. Bertin, and A. Orsetti, Bull. Environ. Contam. Tox., 97, 521–527 (2016).

    Article  Google Scholar 

  24. Z. Ozdemir, B. Tras, K. Uney, H. Eser Faki, and T. M. Besoluk, J. Vet. Pharm. Therap., 42, No. 1, 45–51 (2019).

  25. W. Ji, L. Wang, H. Qian, and W. Yao, Spectrosc. Lett., 47, No. 6, 451–457 (2014).

    Article  ADS  Google Scholar 

  26. E. Roets, P. De Pourcq, S. Toppet, J. Hoogmartens, H. Vanderhaeghe, D. H. Williams, and R. J. Smith, J. Chromatogr. A, 303, 117–129 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Davletshin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, pp. 257–263, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davletshin, R.R., Galeev, R.R., Aryslanov, I.R. et al. A Study of the Thermal Degradation of Amoxicillin Trihydrate Using Raman Spectroscopy and High-Performance Liquid Chromatography. J Appl Spectrosc 91, 335–341 (2024). https://doi.org/10.1007/s10812-024-01725-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01725-9

Keywords

Navigation