Skip to main content
Log in

In situ mass spectrometry of glucose decomposition under hydrothermal reactions

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We designed an in situ mass spectrometry (in situ MS) analysis method and developed to identify the products of glucose decomposition under hydrothermal condition for the first time. The in situ MS analysis was performed by coupling a tubular batch reactor with a quadrupole mass analyzer via custom-built connection fittings. The products of glucose decomposition were investigated by in situ MS, mass spectrometry of cold effluent, and high-performance liquid chromatography (HPLC) analysis of cold effluent and the results were compared. At 140 °C, in situ MS and mass spectrometry of cold effluent showed that the decomposition of glucose does not proceed; this was confirmed by comparison with the mass spectral database for glucose. At 180 °C or higher, a clear base fragmentation peak of 5-hydroxymethylfurfural (5-HMF) at position m/z 97 and that of furfural at m/z 96, formic acid (m/z=46) and levulinic acid (m/z=116) were observed by mass spectrometry. No levulinic acid or furfural was observed through conventional HPLC analysis under any condition; only glucose, formic acid, and 5-HMF could be detected. The effectiveness of in situ MS analysis is clear, compared to mass spectrometry analysis of cold effluent and HPLC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chen, D. Zhou, G. Luo, S. Zhang and J. Chen, Renew. Sust. Energy Rev., 47, 427 (2015).

    Article  CAS  Google Scholar 

  2. M. Song, H. Duc Pham, J. Seon and H. C. Woo, Renew. Sust. Energy Rev., 50, 782 (2015).

    Article  CAS  Google Scholar 

  3. N. Wei, J. Quarterman and Y. S. Jin, Trends Biotechnol., 31, 70 (2013).

    Article  CAS  Google Scholar 

  4. D. Knezevic, W. P. M. van Swaaij and S. R. A. Kersten, Ind. Eng. Chem. Res., 48, 4731 (2009).

    Article  CAS  Google Scholar 

  5. X. F. Cao, X. W. Peng, S. N. Sun, L. X. Zhong, W. Chen, S. Wang and R. C. Sun, Carbohyd. Polym., 118, 44 (2015).

    Article  CAS  Google Scholar 

  6. S. S. Joshi, A. D. Zodge, K. V. Pandare and B. D. Kulkarni, Ind. Eng. Chem. Res., 53, 18796 (2014).

    Article  CAS  Google Scholar 

  7. M. Blazso, J. Anal. Appl. Pyrol., 74, 344 (2005).

    Article  CAS  Google Scholar 

  8. P. R. Patwardhan, J. A. Satrio, R. C. Brown and B. H. Shanks, Bioresour. Technol., 101, 4646 (2010).

    Article  CAS  Google Scholar 

  9. M. F. Alif, K. Matsumoto and K. Kitagawa, Microchem. J., 99, 394 (2011).

    Article  CAS  Google Scholar 

  10. M. R. Hurt, J. C. Degenstein, P. Gawecki, D. J. Borton, N. R. Vinueza, L. Yang, R. Agrawal, W. N. Delgass, F. H. Ribeiro and H. I. Kenttamaa, Anal. Chem., 85, 10927 (2013).

    Article  CAS  Google Scholar 

  11. H. Kano, T. Okamoto, S. Kitagawa, Y. Iiguni, H. Ohtani, H. Ito, K. Iwai and M. Kuno, J. Anal. Appl. Pyrol., 113, 165 (2015).

    Article  CAS  Google Scholar 

  12. J. Piskorz, P. Majerski, D. Radlein, A. Vladars-Usas and D. S. Scott, J. Anal. Appl. Pyrol., 56, 145 (2000).

    Article  CAS  Google Scholar 

  13. Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland and G. W. Huber, J. Phys. Chem. C, 113, 20097 (2009).

    Article  CAS  Google Scholar 

  14. F. R. Sharpe and C. G. Chappell, J. I. Brewing, 96, 381 (1990).

    Article  CAS  Google Scholar 

  15. Y. Yu, Z. M. Shafie and H. Wu, Ind. Eng. Chem. Res., 52, 17006 (2013).

    Article  CAS  Google Scholar 

  16. Y. Yu, B. Song, Y. Long and H. Wu, Energy Fuels, 30, 8787 (2016).

    Article  CAS  Google Scholar 

  17. T. Yoshida, S. Yanachi and Y. Matsumura, J. Jpn. Inst. Energy, 86, 700 (2007).

    Article  CAS  Google Scholar 

  18. Y. Matsumura, S. Yanachi and T. Yoshida, Ind. Eng. Chem. Res., 45, 1875 (2006).

    Article  CAS  Google Scholar 

  19. C. Promdej and Y. Matsumura, Ind. Eng. Chem. Res., 50, 8492 (2011).

    Article  CAS  Google Scholar 

  20. B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai, Ind. Eng. Chem. Res., 38, 2888 (1999).

    Article  CAS  Google Scholar 

  21. B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai, Ind. Eng. Chem. Res., 36, 1552 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiko Matsumura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duangkaew, P., Inoue, S., Aki, T. et al. In situ mass spectrometry of glucose decomposition under hydrothermal reactions. Korean J. Chem. Eng. 34, 1524–1530 (2017). https://doi.org/10.1007/s11814-017-0030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0030-4

Keywords

Navigation