Skip to main content
Log in

Detection of the Brominating Activity of Myeloperoxidase Using Fluorescein

  • Published:
Journal of Applied Spectroscopy Aims and scope

A study was carried out on the spectralluminescent properties of fl uorescein after its reaction with various reactive oxygen and halogen species (\({O}_{2}^{\bullet-},\) H2O2, HOCl, HOBr, HOSCN, N-chloramine, taurine N-chloramine, and taurine N-bromamine) as well as in the myeloperoxidase (MPO)–H2O2–Cl/Br/SCN system. Reaction with only HOBr or with the MPO–H2O2–Br system turns fluorescein into a compound with an absorption maximum at 518 nm. The fluorescence maximum is recorded at 540 nm when excited at 520 nm, corresponding to eosin Y (brominated fluorescein). Conditions with phosphatebuffered saline (PBS) at pH 7.4 containing 137 mM NaCl, 5 mM fluorescein, 15–30 mM NaBr, and 25–50 mM H2O2 were found to be optimal for detecting HOBr in solution. A qualitative method for determining the brominating activity of MPO in vitro has been proposed. This method was used to study the effect of physiological and synthetic inhibitors as well as reactive oxygen and halogen species scavengers on the brominating activity of MPO. Our results indicate that fluorescein holds promise for use in a fluorescent method for detecting the brominating activity of mammalian hemecontaining peroxidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Arnhold and E. Malle, Antioxidants (Basel), 11, No. 5, 890 (2022).

    Article  Google Scholar 

  2. B. Bathish, R. Turner, M. Paumann-Page, A. J. Kettle, and C. C. Winterbourn, Arch. Biochem. Biophys., 646, 120–127 (2018).

    Article  Google Scholar 

  3. H. B. Dunford, Redox Rep., 5, No. 4, 169–171 (2000).

    Article  Google Scholar 

  4. P. G. Furtmüller, U. Burner, and C. Obinger, Biochemistry, 37, No. 51, 17923–17930 (1998).

    Article  Google Scholar 

  5. D. I. Pattison and M. J. Davies, Curr. Med. Chem., 13, No. 27, 3271–3290 (2006).

    Article  Google Scholar 

  6. O. M. Panasenko, I. V. Gorudko, and A. V. Sokolov, Usp. Biol. Khim., 53, 195–244 (2013).

    Google Scholar 

  7. Y. W. Yap, M. Whiteman, and N. S. Cheung, Cell Signal, 19, No. 2, 219–228 (2007).

    Article  Google Scholar 

  8. M. Whiteman, J. P. Spencer, H. H. Szeto, and J. S. Armstrong, Antioxid. Redox Signal., 10, No. 3, 641–650 (2008).

    Article  Google Scholar 

  9. O. M. Panasenko and V. I. Sergienko, Vest. Ros. Akad. Med. Nauk, No. 1, 27–39 (2010).

  10. T. Nishikawa, E. Miyahara, M. Horiuchi, K. Izumo, Y. Okamoto, Y. Kawai, Y. Kawano, and T. Takeuchi, Environ. Health Perspect., 120, No. 1, 62–67 (2012).

    Article  Google Scholar 

  11. R. Senthilmohan and A. J. Kettle, Arch. Biochem. Biophys., 445, No. 2, 235–244 (2006).

    Article  Google Scholar 

  12. T. Suzuki, A. Nakamura, and M. Inukai, Bioorg. Med. Chem., 21, No. 13, 3674–3679 (2013).

    Article  Google Scholar 

  13. O. M. Panasenko, T. Vakhrusheva, V. Tretyakov, H. Spalteholz, and J. Arnhold, Chem. Phys. Lipids, 149, 40–51 (2007).

    Article  Google Scholar 

  14. M. J. Davies, J. Clin. Biochem. Nutr., 48, No. 1, 8–19 (2011).

    Article  Google Scholar 

  15. M. J. Davies, C. L. Hawkins, D. I. Pattison, and M. D. Rees, Antioxid. Redox Signal., 10, No. 7, 1199–1234 (2008).

    Article  Google Scholar 

  16. O. Skaff , D. I. Pattison, and M. J. Davies, Chem. Res. Toxic., 20, No. 12, 1980–1988 (2007).

    Article  Google Scholar 

  17. V. E. Reut, I. V. Gorudko, D. V. Grigor'eva, A. V. Sokolov, and O. M. Panasenko, Bioorg. Khim., 48, No. 3, 1–27 (2022).

    Google Scholar 

  18. Y. Fang and W. Dehaen, Molecules, 26, No. 2, 363 (2021).

    Article  Google Scholar 

  19. J. Flemmig, J. Zschaler, J. Remmler, and J. Arnhold, J. Biol. Chem., 287, No. 33, 27913–27923 (2012).

    Article  Google Scholar 

  20. W. Qu, X. Zhang, Y. Ma, F. Yu, and H. Liu, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 222, Article ID 117240 (2019).

  21. X. Huo, X. Wang, R. Yang, Z. Li, Y. Sun, L. Qu, and H. Zeng, Sensors Actuators B: Chem., 315, Article ID 128125 (2020).

  22. B. I. Stepanov, Introduction to the Chemistry and Technology of Organic Dyes [in Russian], Khimiya, Moscow (1984).

    Google Scholar 

  23. A. V. Sokolov, V. A. Kostevich, E. T. Zakharova, V. R. Samygina, O. M. Panasenko, and V. B. Vasilyev, Free Radic. Res., 49, 800–811 (2015).

    Article  Google Scholar 

  24. A. V. Sokolov, V. A. Kostevich, D. N. Romanico, E. T. Zakharova, and V. B. Vasilyev, Biochemistry (Moscow), 77, No. 6, 631–638 (2012).

  25. J. C. Morris, J. Phys. Chem., 70, 3798–3805 (1966).

    Article  Google Scholar 

  26. K. Kumar and D. W. Margerum, Inorg. Chem., 26, No. 16, 2706–2711 (1987).

    Article  Google Scholar 

  27. E. L. Thomas, P. M. Bozeman, M. M. Jeff erson, and C. C. King, J. Biol. Chem., 270, 2906–2913 (1995).

  28. E. L. Thomas, M. B. Grisham, and M. M. Jeff erson, Methods Enzymol., 132, 569–585 (1986).

  29. F. Y. Ge and L. G. Chen, J. Fluoresc., 18, 741–747 (2008).

    Article  Google Scholar 

  30. A. V. Sokolov, V. A. Kostevich, S. O. Kozlov, I. S. Donskyi, I. I. Vlasova, A. O. Rudenko, E. T. Zakharova, V. B. Vasilyev, and O. M. Panasenko, Free Radic. Res., 49, No. 6, 777–789 (2015).

    Article  Google Scholar 

  31. P. G. Furtmüller, U. Burner, W. Jantschko, G. Regelsberger, and C. Obinger, FEBS Lett., 484, 139–143 (2000).

    Article  Google Scholar 

  32. M. PaumannPage, P. G. Furtmüller, S. Hofbauer, L. N. Paton, C. Obinger, and A. J. Kettle, Arch. Biochem. Biophys., 539, No. 1, 51–62 (2013).

    Article  Google Scholar 

  33. A. L. Chapman, T. J. Mocatta, S. Shiva, A. Seidel, B. Chen, I. Khalilova, M. E. PaumannPage, G. N. Jameson, C. C. Winterbourn, and A. J. Kettle, J. Biol. Chem., 288, No. 9, 6465–6477 (2013).

    Article  Google Scholar 

  34. A. V. Sokolov,, V. A. Kostevich, E. T. Zakharova, V. R. Samygina, O. M. Panasenko, and V. B. Vasilyev, Free Radic. Res., 49, No. 6, 800–811 (2015).

    Article  Google Scholar 

  35. M. Roche, P. Rondeau, N. R. Singh, E. Tarnus, and E. Bourdon, FEBS Lett., 582, No. 13, 1783–1787 (2008).

    Article  Google Scholar 

  36. A. J. Kettle, C. A. Gedye, and C. C. Winterbourn, Biochem. J., 321, 503–508 (1997).

    Article  Google Scholar 

  37. B. Davies and S. W. Edwards, Biochem. J., 258, No. 3, 801–806 (1997).

    Article  Google Scholar 

  38. P. R. Ortiz de Montellano, S. K. David, M. A. Ator, and D. Tew, Biochemistry, No. 15, 5470–5476 (1988).

    Google Scholar 

  39. P. M. Bozeman, D. B. Learn, and E. L. Thomas, Biochem. Pharmacol., 44, No. 3, 553–563 (1992).

    Article  Google Scholar 

  40. D. I. Pattison and M. J. Davies, Curr. Med. Chem., 13, No. 27, 3271–3290 (2006).

    Article  Google Scholar 

  41. J. D. Chandler and B. J. Day, Free Radic. Res., 49, No. 6, 695–710 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Grigorieva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, pp. 234–244, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorieva, D.V., Gorudko, I.V., Reut, V.E. et al. Detection of the Brominating Activity of Myeloperoxidase Using Fluorescein. J Appl Spectrosc 91, 313–322 (2024). https://doi.org/10.1007/s10812-024-01723-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01723-x

Keywords

Navigation