Skip to main content
Log in

Application of Celestine Blue B and Gallocyanine for Studying the Effect of Drugs on the Production of Reactive Oxygen and Halogen Species by Neutrophils

  • Published:
Journal of Applied Spectroscopy Aims and scope

We investigated the effect of drugs (dapsone, paracetamol, and isoniazid) on the production of reactive oxygen and halogen species by neutrophils. The standard fluorescent method using scopoletin as well as recently developed fluorescent methods using oxazine dyes, celestine blue B, and gallocyanine were employed for this purpose. Celestine blue B reacts selectively with hypochlorous acid, while gallocyanine reacts mainly with the superoxide radical-anion, which reveals the regulatory effect of anti-inflammatory drugs on neutrophil NADPH-oxidase and myeloperoxidase responsible for the production of reactive oxygen and halogen species, respectively. These results indicate that gallocyanine and celestine blue B hold promise as chemosensors for studying the effect of drugs used in anti-inflammatory therapy for the neutrophil respiratory burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Vorobjeva and B. V. Pinegin, Biochem. Mosc., 79, No. 12, 1286–1296 (2014).

    Google Scholar 

  2. P. H. Leliefeld, C. M. Wessels, L. P. Leenen, L. Koenderman, and J. Pillay, Crit. Care, 20, No. 1, 73–81 (2016).

    Google Scholar 

  3. M. Colitti, B. Stefanon, G. Gabai, M. Gelain, and F. Bonsembiante, Antioxidants, 8, No. 1, 28–46 (2019).

    Google Scholar 

  4. A. MandaHandzlik and U. Demkow, in: M. Polorski (Ed.), Pulmonary Infection, Springer, Cham (2015), pp. 51–60.

  5. C. Nathan and A. CunninghamBussel, Nat. Rev. Immunol., 13, No. 5, 349–361 (2013).

    Google Scholar 

  6. F. Vatansever, W. C. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N. A. Parizotto, R. Yin, G. P. Tegos, and M. R. Hamblin, FEMS Microbiol. Rev., 37, No. 6, 955–989 (2013).

    Google Scholar 

  7. G. Dent. K. F. Rabe, H. Magnussen, Brit. J. Pharmacol., 122, No. 4, 758–764 (1997).

    Google Scholar 

  8. K. Brieger, S. Schiavone, F. J. Miller, Jr., and K. Krause, Swiss Med. Weekly, 142, 13659–13664 (2012).

    Google Scholar 

  9. A. Phaniendra, D. B. Jestadi, and L. Periyasamy, Indian J. Clin. Biochem., 30, No. 1, 11–26 (2015).

    Google Scholar 

  10. N. D. Vaziri and B. RodriguezIturbe, Nat. Clin. Pract. Nephrol., 2, No. 10, 582–593 (2015).

    Google Scholar 

  11. E. Malle, P. G. Furtmüller, W. Sattler, and C. Obinger, Brit. J. Pharmacol., 152, No. 6, 838–854 (2007).

    Google Scholar 

  12. S. O. Kozlov, I. V. Kudryavtseva, N. A. Grudinina, A. V. Kostevich, O. M. Panasenko, A. V. Sokolov, and V. B. Vasil’ev, Acta Biomed. Sci., 1, Nos. 2–3, 86–91 (2016).

    Google Scholar 

  13. V. E. Lutsenko, D. V. Grigor’eva, I. V. Gorudko, O. M. Panasenko, A. V. Sokolov, and S. N. Cherenkevich, Dokl. Akad. Nauk Belarusi, 63, No. 6, 730–735 (2019).

    Google Scholar 

  14. V. E. Lutsenko, D. V. Grigor’eva, I. V. Gorudko, S. N. Cherenkevich, N. P. Gorbunov, V. A. Kostevich, O. M. Panasenko, and A. V. Sokolov, Med. Akad. Zh., 19, No. 2, 63–71 (2019).

    Google Scholar 

  15. World Health Organization N WHO/MVP/EMP/IAU/2019.06 (2019), pp. 1–60.

  16. G. Wozel and C. Blasum, Arch. Dermatol. Res., 306, No. 2, 103–124 (2014).

    Google Scholar 

  17. J. A. Uetrecht, N. A. Zahid, N. H. Shear, and W. D. Biggar, J. Pharmacol. Exp. Ther., 245, No. 1, 274–279 (1988).

    Google Scholar 

  18. M. D. Coleman, Brit. J. Dermatol., 129, No. 5, 507–513 (1993).

    Google Scholar 

  19. S. M. Debol, M. J. Herron, and R. D. Nelson, J. Leukoc. Biol., 62, No. 6, 827–836 (1997).

    Google Scholar 

  20. P. M. Bozeman, D. B. Learn, and E. L. Thomas, Biochem. Pharmacol., 44, No. 3, 553–563 (1992).

    Google Scholar 

  21. A. V. Sokolov, V. A. Kostevich, S. O. Kozlov, I. S. Donskyi, I. I. Vlasova, A. O. Rudenko, E. T. Vasilyev, and O. M. Panasenko, Free Radic. Res., 49, No. 6, 777–789 (2015).

    Google Scholar 

  22. M. Freitas, V. M. Costa, D. Ribeiro, D. Couto, G. Porto, F. Carvalho, and E. Fernandez, Toxicol. Lett., 219, No. 2, 170–177 (2013).

    Google Scholar 

  23. H. S. Smith, Pain Phys., 12, No. 1, 269–280 (2009).

    Google Scholar 

  24. M. Koelsch, R. Maliak, G. G. Graham, T. Kajer, M. K. Milligan, L. Q. Nguyen, D. W. Newsham, J. S. Keh, A. J. Kettle, K. F. Scott, J. B. Ziegler, D. I. Pattison, S. Fu, C. L. Hawkins, M. D. Rees, and M. J. Davies, Biochem. Pharmacol., 79, No. 8, 1156–1164 (2010).

    Google Scholar 

  25. H. Jaeschke, Hepatology, 43, No. 6, 1191–1194 (2006).

    Google Scholar 

  26. H. Jaeschke, M. R. McGill, and A. Ramachandran, Drug Metab. Rev., 44, No. 1, 88–106 (2012).

    Google Scholar 

  27. H. Jaeschke, Toxicol. Lett., 144, No. 3, 279–288 (2003).

    Google Scholar 

  28. P. Wang, K. Pradhan, X. Zhong, and X. Ma, Acta Pharm. Sin. B, 6, No. 5, 384–392 (2016).

    Google Scholar 

  29. S. R. Khan, A. G. Morgan, K. Michail, N. Srivastava, R. M. Whittal, N. Aljuhani, and A. G. Siraki, Biochem. Pharmacol., 106, 46–55 (2016).

    Google Scholar 

  30. L. V. Forbes, . G. Furtmüller, I. Khalilova, R. Turner, C. Oblinger, and A. J. Kettle, Biochem. Pharmacol., 84, 949–960 (2012).

    Google Scholar 

  31. I. V. Gorudko, A. V. Mukhortava, B. Caraher, M. Ren, S. N. Cherenkevich, G. M. Kelly, and A. V. Tymoshenko, Arch. Biochem. Biophys., 516, No. 2, 173–181 (2011).

    Google Scholar 

  32. V. E. Lutsenko, D. V. Grigor’eva, S. N. Cherenkevich, O. M. Panasenko, A. V. Sokolov, and I. V. Gorudko, Aktual’nye Vopr. Biol. Fiz. Khim., 3, No. 3, 612–618 (2018).

    Google Scholar 

  33. G. T. Nguyen, E. R. Green, and J. Mecsas, Front. Cell. Infect. Microbiol., 7, 373–396 (2018).

    Google Scholar 

  34. F. R. Sheppard, M. R. Kelher, E. E. Moore, N. J. McLaughlin, A. Banerjee, and C. C. Silliman, J. Leukoc. Biol., 78, No. 5, 1025–1042 (2005).

    Google Scholar 

  35. J. Nagaji, Kurume Med. J., 46, Nos. 3–4, 157–162 (1999).

    Google Scholar 

  36. H. Rosen and S. J. Klebanoff, J. Exp. Med., 149, No. 1, 27–39 (1979).

    Google Scholar 

  37. V. E. Lutsenko, D. V. Grigor’eva, I. V. Gorudko, E. V. Shamova, A. V. Sokolov, S. N. Cherenkevich, and O. M. Panasenko, in: Reports to the International Conference on Receptors and Intracellular Signaling, May 20–24, 2019, Pushchino [in Russian], Vol. 2, pp. 823–827.

  38. P. J. O’Brien, S. Khan, and S. D. Jatoe, in: C. M. Witmer, R. R. Snyder, D. J. Jollow, G. F. Kalf, J. J. Kocsis, and I. G. Spies (Eds.), Biological Reactive Intermediates IV, Plenum Press, New York (1991), pp. 51–64.

    Google Scholar 

  39. M. Bedner and W. A. MacCrehan, Environ. Sci. Technol., 40, No. 2, 516–522 (2006).

    ADS  Google Scholar 

  40. A. Hillar and P. C. Loewen, Arch. Biochem. Biophys., 323, No. 2, 438–446 (1995).

    Google Scholar 

  41. V. Bogdandi, G. Lente, and I. Fabian, RSC Adv., 5, No. 83, 67500–67508 (2015).

    Google Scholar 

  42. S. M. Debol, M. J. Herron, and R. D. Nelson, J. Leukoc. Biol., 62, No. 6, 827–836 (1997).

    Google Scholar 

  43. T. Suda, Y. Suzuki, T. Matsui, T. Inoue, O. Niide, T. Yoshimaru, H. Suzuki, C. Ra, and T. Oxhiai, Brit. J. Dermatol., 152, No. 5, 887–895 (2005).

    Google Scholar 

  44. D. W. Choi, B. LeiningerMuller, Y. C. Kim, P. Leroy, G. Siest, and M. Wellman, Free Radic. Res., 36, No. 8, 893–903 (2002).

    Google Scholar 

  45. B. Okuyan, F. V. Izzetin, M. Sancar, Ö. Ertaş, A. Çevikbaş, and Ü. S. Gürer, Int. Immunopharmacol., 5, Nos. 7–8, 1337–1342 (2005).

    Google Scholar 

  46. B. M. Zeis, Chemotherapy, 34, No. 1, 56–60 (1988).

    Google Scholar 

  47. L. G. Kielland, R. A. Vage, G. E. Eide, S. Sørnes, and A. Naess, Chemotherapy, 57, No. 4, 339–344 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Reut.

Additional information

Translated from Zhurnal Spektroskopii, Vol. 89, No. 4, pp. 637–645, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reut, V.E., Grigorieva, D.V., Gorudko, I.V. et al. Application of Celestine Blue B and Gallocyanine for Studying the Effect of Drugs on the Production of Reactive Oxygen and Halogen Species by Neutrophils. J Appl Spectrosc 87, 693–700 (2020). https://doi.org/10.1007/s10812-020-01056-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01056-5

Keywords

Navigation