Skip to main content
Log in

Rapid Discrimination of Cervical Cancer from Hysteromyoma Using Label-Free Serum RNA Based on Surface-Enhanced Raman Spectroscopy and AdaBoost Algorithm

  • Published:
Journal of Applied Spectroscopy Aims and scope

We investigated the feasibility of using surface-enhanced Raman scattering (SERS) technology combined with the AdaBoost algorithm to rapidly discriminate cervical cancer patients from hysteromyoma patients. Using Au colloids as the SERS active substrate, we recorded Raman signal measurements on serum RNA samples obtained from 35 patients diagnosed with cervical cancer and 30 patients diagnosed with hysteromyoma. Analysis of RNA SERS spectra using principal component analysis, then three principal components (PC2, PC11, and PC24) with significant differences were chosen using the independent samples t-test (p < 0.05). The distinctive peak intensities of the relevant substance, measured at 448, 519, 698, 1003, and 1076 cm–1, were found to be correlated with the substance’s alterations during the carcinogenesis process. The ideal AdaBoost classification model was developed by fi ne-tuning its parameters. The model showcased an impressive accuracy of 96.92%, exhibiting a high sensitivity of 94.28% and an exceptional specificity of 100%, as reported in the results. Compared to the linear discriminant analysis, support vector machine models, the effectiveness of classification greatly improved. The current findings indicate that serum SERS technology, combined with the AdaBoost algorithm, is anticipated to be developed into a potent screening tool for cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sung, J. Ferlay, R.L. Siegel, et al., Cancer J. Clin., 71, No. 3, 209–249 (2021); https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. A. Slomski, JAMA, 327, No. 9, 804 (2022); https://doi.org/10.1001/jama.2022.2188.

  3. P. A. Cohen, A. Jhingran, A. Oaknin, et al., Lancet, 393, No. 10167, 169–182 (2019); https://doi.org/10.1016/S01406736(18)32470-X.

  4. M. Vu, J. Yu, O. A. Awolude, et al., Curr. Probl. Cancer, 42, No. 5, 457–465 (2018); /https://doi.org/10.1016/j.currproblcancer.2018.06.003.

  5. E. T. Fontham, A. M. Wolf, T. R. Church, et al., Cancer J. Clin., 70, No. 5, 321–346 (2020); https://doi.org/10.3322/caac.21628.

    Article  Google Scholar 

  6. R. Catarino, P. Petignat, G. Dongui, et al., World J. Clin. Oncol., 6, No. 6, 281 (2015); https://doi.org/10.5306/wjco.v6.i6.281.

  7. P. Rajaraman, B. O. Anderson, P. Basu, et al., Lancet Oncol., 16, No. 7, e352–e361 (2015); https://doi.org/10.1016/S1470-2045(15)00078-9.

  8. R. Sankaranarayanan, P. O. Esmy, R. Rajkumar, et al., Lancet, 370, No. 9585, 398–406 (2007); org/https://doi.org/10.1016/S0140-6736(07)61195-7.

  9. R. R. Jones, D. C. Hooper, L. Zhang, et al., Nanoscale Res. Lett., 14, No. 1, 1–34 (2019); https://doi.org/10.1186/s11671-019-3039-2.

    Article  Google Scholar 

  10. X. Zhang, C. R. Yonzon, M. A. Young, et al., IEE Proc. Nanobiotechnol., 152, No. 6, 195–206 (2005); https://doi.org/10.1049/ip-nbt:20050009.

    Article  Google Scholar 

  11. L. A. Lane, X. Qian, and S. Nie, Chem. Rev., 115, No. 19, 10489–10529 (2015); https://doi.org/10.1021/acs.chemrev.5b00265.

    Article  Google Scholar 

  12. Y. Chen, G. Chen, X. Zheng, et al., Med. Phys., 39, No. 9, 5664–5668 (2012); https://doi.org/10.1118/1.4747269.

    Article  Google Scholar 

  13. Y. Chen, G. Chen, S. Feng, et al., J. Biomed. Opt., 17, No. 6, Article ID 067003 (2012); https://doi.org/10.1117/1.JBO.17.6.067003.

  14. S. Nasir, M. I. Majeed, H. Nawaz, et al., Photodiagnosis Photodyn. Ther., 33, Article ID 102152 (2021); https://doi.org/10.1016/j.pdpdt.2020.102152.

  15. X. Wang, H. K. Wang, Y. Li, et al., Proc. NAS, 111, No. 11, 4262–4267 (2014); https://doi.org/10.1073/pnas.1401430111.

  16. M. L. Tornesello, R. Faraonio, L. Buonaguro, et al., Front. Oncolo., 10, Article ID 150 (2020); https://doi.org/10.3389/fonc.2020.00150.

  17. Y. He, J. Lin, Y. Ding, et al., Int. J. Cancer, 138, No. 6, 1312–1327 (2016); https://doi.org/10.1002/ijc.29618.

    Article  Google Scholar 

  18. J. D. Driskell, A. G. Seto, L. P. Jones, et al., Biosens. Bioelectron., 24, No. 4, 917–922 (2008); https://doi.org/10.1016/j.bios.2008.07.060.

    Article  Google Scholar 

  19. J. D. Driskell, O. M. Primera-Pedrozo, R. A. Dluhy, et al., Appl. Spectrosc., 63, No. 10, 1107–1114 (2009); https://doi.org/10.1366/000370209789553183.

    Article  ADS  Google Scholar 

  20. A. A. Bunaciu, S. Fleschin, V. D. Hoang, et al., Crit. Rev. Anal. Chem., 47, No. 1, 67–75 (2017); https://doi.org/10.1080/10408347.2016.1209104.

  21. X. D. Zhang, J. F. Li, Q. Q. Zhao, et al., Laser & Infrared, 38, 267–269 (2008); https://doi.org/10.1016/j.jpba.2007.11.019.

  22. B. B. Tang, S. Y. Liu, Y. U. Zhan, et al., Exp. Therap. Med., 10, No. 1, 269–274 (2015); https://doi.org/10.3892/etm.2015.2455.

  23. X. Dong, Z. Yu, W. Cao, et al., Front. Comp. Sci., 14, No. 2, 241–258 (2020); https://doi.org/10.1007/s11704-019-8208-z.

    Article  Google Scholar 

  24. A. Savitzky and M. J. Golay, Anal. Chem., 36, No. 8, 1627–1639 (1964), https://doi.org/https://doi.org/10.1021/ac60319a045.

    Article  ADS  Google Scholar 

  25. Z. M. Zhang, S. Chen, and Y. Z. Liang, Analyst, 135, No. 5, 1138–1146 (2010); https://doi.org/10.1039/b922045c.

  26. J. D. Rodriguez, B. J. Westenberger, L. F. Buhse, et al., Analyst, 136, No. 20, 32–40 (2011); https://doi.org/10.1039/c1an15636e.

  27. J. Hatwell, M. M. Gaber, and R. M. Atif Azad, BMC Med. Inform. Dec. Mak., 20, No. 1, 250 (2020); https://doi.org/10.1186/s12911-020-01201-2.

  28. S. A. Sánchez-Rojo, B. E. Martínez-Zérega, E. F. Velázquez-Pedroza, et al., Rev. Mexicana de Física, 62, No. 3, 213–218 (2016).

    Google Scholar 

  29. X. Zheng, G. Wu, J. Wang, et al., Biomed. Opt. Express, 13, No. 4, 1912–1923 (2022); https://doi.org/10.1364/BOE.448121.

    Article  Google Scholar 

  30. K . Mühlenbruch, A. Heraclides, E. W. Steyerberg, et al., Eur. J. Epidemiol., 28, No. 1, 25–33 (2013); https://doi.org/10.1007/s10654-012-9744-0.

    Article  Google Scholar 

  31. A. C. S. Talari, Z. Movasaghi, S. Rehman, et al., Appl. Spectr. Rev., 50, No. 1, 46–111 (2015); https://doi.org/10.1080/05704928.2014.923902.

  32. S. Qiu, Y. Xu, L. Huang, et al., Oncol. Lett., 11, No. 1, 884–890 (2016); https://doi.org/10.3892/ol.2015.3969.

    Article  Google Scholar 

  33. D. Puchowicz and M. Cieslak, Raman Spectroscopy in the Analysis of Textile Structures, Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization, pp. 1–21 (2021); https://doi.org/10.5772/intechopen.99731.

  34. Y. Li, R. Shen, H. Wu, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 225, Article ID 117483 (2020); https://doi.org/10.1016/j.saa.2019.117483.

  35. Z. Huang, A. McWilliams, H. Lui, et al., Int. J. Cancer, 107, No. 6, 1047–1052 (2003); https://doi.org/10.1002/ijc.11500.

    Article  Google Scholar 

  36. J. I. Githaiga, H. K. Angeyo, K. A. Kaduki, et al., J. Spectrosc. (2020); https://doi.org/10.1155/2020/8879985.

  37. S. Chaichian, R. Shafabakhsh, S. M. Mirhashemi, et al., J. Cell. Physiol., 235, No. 2, 718–724 (2020); https://doi.org/10.1002/jcp.29009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Wu or Jing Wang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, p. 166, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Wu, G., Wang, J. et al. Rapid Discrimination of Cervical Cancer from Hysteromyoma Using Label-Free Serum RNA Based on Surface-Enhanced Raman Spectroscopy and AdaBoost Algorithm. J Appl Spectrosc 91, 200–208 (2024). https://doi.org/10.1007/s10812-024-01707-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01707-x

Keywords

Navigation