Skip to main content
Log in

Influence of Frequency Chirp and Axial Magnetic Field on Electron Acceleration by Employing cos2 Laser Pulse Envelope in Vacuum

  • Published:
Journal of Applied Spectroscopy Aims and scope

Employment of an external magnetic field on a frequency-chirped cos2 laser pulse envelope for effective electron acceleration is studied. After the electron interacts with the laser pulse, the frequency chirp influences the electron dynamics, betatron resonance, and energy gain of the electron, ensuring effective acceleration of the electron with significant energy gain in the order of GeV. If a suitable external magnetic field is applied, an electron can gain energy and retain the same energy significantly. In this research, we employed the cos2 laser pulse envelope to examine the impact of the laser pulse envelope on the investigation of electron acceleration in a vacuum. The front of the tested envelopes had received an axial injection of electrons. In all calculations, it is assumed that the front end of each pulse met the electron at time t = 0 at the position of origin. The relativistic Newton–Lorentz equations of electron motion in the field of the laser pulse have been solved analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sprangle, G. Joyce, E. Esarey, and A. Ting, AIP Conf. Proc., 175, 231–239 (1988).

    Google Scholar 

  2. C. Joshi and T. Katsouleas, Phys. Today, 56, 47–53 (2003).

    Article  Google Scholar 

  3. Y. I. Salamin, Phys. Lett. A, 3, 4950–4953 (2010).

    Article  ADS  Google Scholar 

  4. L. J. Wong, K. H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. S. Kartner, and I. Kaminer, Sci. Rep., 7, 1159–1167 (2017).

    Article  ADS  Google Scholar 

  5. D. K. Kuri, Phys. Plasmas, 27, 3102–3107 (2020).

    Article  ADS  Google Scholar 

  6. F. Jokar and E. Eslami, Optik, 123, 1947–1951 (2012).

    Article  ADS  Google Scholar 

  7. A. K. Pramanik, H. S. Ghotra, N. Kant, and J. Rajput, IOP Conf. Proc. RAFAS, 2267, 012013–012018 (2021).

    Google Scholar 

  8. T. Tajima and J. Dawson, Phys. Rev., 43, 267–270 (1979).

    ADS  Google Scholar 

  9. L. Cichitelli, H. Hora, and R. Postle, Phys. Rev. A, 41, 3727–3732 (1990).

    Article  ADS  Google Scholar 

  10. J. X. Wang, Y. K. Ho, Q. Kong, L. J. Zhu, L. Feng, S. Scheid, and H. Hora, Phys. Rev. E, 58, 6575–6577 (1998).

    Article  ADS  Google Scholar 

  11. H. Hora, M. Hoelss, W. Scheid, J. W. Wang, Y. K. Ho, F. Osman, and R. Castillo, Laser Part. Beams, 18, 135–144 (1999).

    Article  ADS  Google Scholar 

  12. J. J. Xu, Y. K. Ho, Q. Kong, Z. Chen, P. X. Wang, W. Wang, and W. Lin, J. Appl. Phys., 98, 6105–6108 (2005).

    ADS  Google Scholar 

  13. B. Rau, T. Tajima, and H. Hojo, Phys. Rev. Lett., 78, 3310–3313 (1997).

    Article  ADS  Google Scholar 

  14. G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. Lett., 78, 3314–3317 (1997).

    Article  ADS  Google Scholar 

  15. J. Faure, J. R. Marques, V. Malka, F. Amiranoff, Z. Najmudin, B. Walton, J. P. Roussean, S. Rance, A. Solodov, and P. Mora, Phys. Rev. E, 63, 5401–5404 (2001).

    Article  Google Scholar 

  16. W. P. Leemans, P. Catravas, E. Esarey, C. G. R. Geddes, C. Toth, R. Trines, C. B. Schroeder, A. B. Shadwick, V. J. Tilborg, and J. Faure, Phys. Rev. Lett., 89, 4802–4805 (2002).

    Article  ADS  Google Scholar 

  17. H. Hora, Nature, London, 333, 337–338 (1988).

    Article  Google Scholar 

  18. F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J. R. Marques, G. Matthieussent, P. Mine, A. Modena, P. Mora, J. Morillo, and Z. Najmudin, Phys. Rev. Lett., 81, 995–998 (1995).

    Article  ADS  Google Scholar 

  19. J. Singh, J. Rajput, H. S. Ghotra, and N. Kant, Commun. Theor. Phys., 73, 5502–5506 (2021).

    Article  Google Scholar 

  20. H. S. Ghotra, D. Jaroszynski, B. Ersfeld, N. S. Saini, S. Yoffe, and N. Kant, Laser Part. Beams, 36, 154–161 (2018).

    Article  ADS  Google Scholar 

  21. A. K. Pramanik, H. S. Ghotra, N. Kant, and J. Rajput, Laser Phys. Lett., 19, Article ID 075301 (2022).

  22. P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, and A. M. Sessler, Appl. Phys. Lett., 78, 2253–2265 (2001).

    Article  ADS  Google Scholar 

  23. R. B. Palmer, in: Frontiers of Particle Beams, 296, (1988), pp. 607–635.

  24. K. P. Singh, Appl. Phys. Lett., 87, 4102–4105 (2005).

    Google Scholar 

  25. D. Strickland and G. Mourou, Opt. Commun., 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  26. H. S. Ghotra and N. Kant, Laser Phys. Lett., 13, 5402–5408 (2016).

    Article  Google Scholar 

  27. Y. I. Salamin and N. M. Jisrawi, J. Phys. B: At. Mol. Opt. Phys. 47, 5601–5605 (2014).

    Article  Google Scholar 

  28. H. S. Ghotra and N. Kant, Opt. Rev., 22, 539–543 (2015).

    Article  Google Scholar 

  29. J. Rajput, N. Kant, and A. Singh, AIP Conf. Proc., 1860, 5–12 (2017).

    Google Scholar 

  30. N. Kant, J. Rajput, and A. Singh, Eur. Phys. J. D, 74, 142–150 (2020).

    Article  ADS  Google Scholar 

  31. D. N. Gupta, N. Kant, and K. P. Singh, Laser Phys., 29, 5301–5305 (2019).

    Article  ADS  Google Scholar 

  32. V. Marceau, A. April, and M. Piché, Opt. Lett., 37, 2442–2444 (2012).

    Article  ADS  Google Scholar 

  33. F. Sohbatzadeh and H. Aku, J. Plasma Phys., 77, 3950–3961 (2011).

    Article  Google Scholar 

  34. Y. I. Salamin, Phys. Lett. A, 376, 2442–2445 (2012).

    Article  ADS  Google Scholar 

  35. N. M. Jisrawi, B. J. Galow, and Y. I. Salamin, Laser Part. Beams, 32, 671–680 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajput.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, p. 165, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A.K., Rajput, J. Influence of Frequency Chirp and Axial Magnetic Field on Electron Acceleration by Employing cos2 Laser Pulse Envelope in Vacuum. J Appl Spectrosc 91, 193–199 (2024). https://doi.org/10.1007/s10812-024-01706-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01706-y

Keywords

Navigation