Skip to main content
Log in

Electrocatalytic and Photoelectrochemical Properties of Nanotubular TiO2 Electrodes Thermally Treated in Air and Hydrogen

  • Published:
Journal of Applied Spectroscopy Aims and scope

Photoelectrochemical, structural, and electrocatalytic properties of titanium dioxide (TiO2) nanotubes obtained by the anodization of titanium with subsequent thermal treatment in air or hydrogen were studied. The heat treatment of TiO2 nanotubes in hydrogen was found to have no effect on the morphology and phase composition of the resultant TiO2 electrodes. However, such treatment led to a high concentration of defect states in the TiO2 crystal lattice due to reductive doping accompanied by the conversion of Ti4+ to Ti3+. The rise in the defectivity diminished the overpotential for oxygen electroreduction at an electrode made from titanium dioxide nanotubes annealed in hydrogen compared to such an electrode annealed in air. In addition, annealing in hydrogen led to a significant increase in the long-wavelength photocurrent generated under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen and S. S. Mao, Chem. Rev., 107, No. 7, 2891–2959 (2007).

    Article  Google Scholar 

  2. C. Dette, M. A. Pérez-Osorio, C. S. Kley, P. Punke, C. E. Patrick, P. Jacobson, F. Giustino, S. J. Jung, and K. Kern, Nano Lett., 14, 6533–6538 (2014).

    Article  ADS  Google Scholar 

  3. X. Chen and A. Selloni, Chem. Rev., 114, 9281–9282 (2014).

    Article  Google Scholar 

  4. P. Roy, S. Berger, and F. Schmuki, Angew. Chem. Int. Ed., 50, 2904–2939 (2011).

    Article  Google Scholar 

  5. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett., 86, No. 2, Article ID 252101 (2005).

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 293, 269–271 (2001).

    Article  Google Scholar 

  7. J. Matos, J. Ocares-Riquelme, P. S. Poon, R. Montaña, X. Garcia, K. Campos, J. C. Hérnandez-Garrido, and M. M. Titirici, J. Colloid Interface Sci., 547, 14–29 (2019).

    Article  ADS  Google Scholar 

  8. S. Cravanzola, F. Cesano, F. Gaziano, and D. Scarano, Catalyst, 7, No. 7, 214–224 (2017).

    Article  Google Scholar 

  9. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, and V. Murugesan, Water Res., 38, No. 13, 3001–3008 (2004).

    Article  Google Scholar 

  10. M. A. Barakat, R. I. AlHutailah, E. Qayyum, J. Rashid, and J. N. Kuhn, Environ. Technol., 35, 137–144 (2014).

    Article  Google Scholar 

  11. D. Robert, Catal. Today, 122, 20–26 (2007).

    Article  Google Scholar 

  12. Y. Lin, P. Ren, and C. Wei, Cryst. Eng. Comm., 21, 3439–3450 (2019).

    Article  Google Scholar 

  13. Y. Lin, L. Tian, X. Tan, X. Li, and X. Chen, Sci. Bull., 62, 431–441 (2017).

    Article  Google Scholar 

  14. T. S. Rajaraman, S. P. Parikh, and V. G. Gandhi, Chem. Eng. J., 389, Article ID 123918 (2020).

  15. N. E. Bororiko and D. V. Sviridov, Zh. Bel. Gos. Univ., Khimiya, 2, 89–97 (2020).

  16. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Science, 331, 746–750 (2011).

    Article  ADS  Google Scholar 

  17. W. Zhou, W. Li, J. Z. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, and D. Zhao, J. Am. Chem. Soc., 136, 9280–9283 (2014).

    Article  Google Scholar 

  18. X. B. Chen, L. Liu, and F. Q. Huang, Chem. Soc. Rev., 44, 1861–1885 (2015).

    Article  Google Scholar 

  19. M. Tian, M. Mahjouri-Samani, G. Eres, R. Sachan, M. Yoon, M. F. Chisholm, K. Wang, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, and G. Duscher, ACS Nano, 9, 10482–10488 (2015).

    Article  Google Scholar 

  20. X. D. Jiang, Y. P. Zhang, J. Jiang, Y. S. Rong, Y. C. Wang, Y. C. Wu, and C. X. Pan, J. Phys. Chem. C, 116, 22619–22624 (2012).

    Article  Google Scholar 

  21. A. Naldoni, M. Allieta, M. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, and V. Dal Santo, J. Am. Chem. Soc., 134, 7600–7603 (2012).

    Article  Google Scholar 

  22. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, and J. Zhang, Sci. Rep., 58, Article ID 8591 (2015).

  23. Y. Liu, K. Mu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, and S. Zhang, Int. J. Hydrogen Energy, 41, 10327–10334 (2016).

    Article  Google Scholar 

  24. C. Mao, F. Zhu, Y. Hou, X. Bu, and P. Feng, Angew. Chem., 53, 10485–10489 (2014).

    Article  Google Scholar 

  25. J. Wang, P. Yang, and B. Huang, Appl. Surface Sci., 356, 391–398 (2015).

    Article  ADS  Google Scholar 

  26. F. Zuo, K. Bozhilov, R. J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, and P. Feng, Angew. Chem., 124, 6327–6330 (2012).

    Article  ADS  Google Scholar 

  27. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, J. Am. Chem. Soc., 132, 11856–11857 (2010).

    Article  Google Scholar 

  28. K. Alamelu, V. Raja, L. Shiamala, and A. Jaffar, Appl. Surf. Sci., 430, 145–154 (2018).

    Article  ADS  Google Scholar 

  29. C. Kim, S. Kim, J. Choi, J. Lee, J. S. Kang, Y. E. Sung, J. Lee, W. Choi, and J. Yoon, Electrochim. Acta, 141, 113–119 (2014).

    Article  Google Scholar 

  30. L. Zhu, H. Ma, H. Han, Y. Fu, C. Ma, Z. Yu, and X. Dong, RSC Adv., 8, 18992–19000 (2018).

    Article  ADS  Google Scholar 

  31. H. Maltanava, S. Mazheika, M. Starykevich, T. Gaevskaya, A. Konakov, M. Ferro, J. Tedim, and S. Poznyak, J. Electroanal. Chem., 904, Article ID 115844 (2022).

  32. H. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, B. Qiao, X. Liu, C. Jin, D. Su, J. Wang, and T. Zhang, Sci. Adv., 3, No. 5, Article ID e170023(1–8) (2017).

  33. C. Zhang, H. Yu, Y. Li, L. Fu, Y. Gao, W. Song, Z. Shao, and B. Yi, Nanoscale, 5, 6834–6841 (2013).

    Article  ADS  Google Scholar 

  34. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, and B. Yi, Chem. Sus. Chem., 6, 659–666 (2013).

    Article  Google Scholar 

  35. M. R. Tarasevich, E. I. Khrushcheva, and V. Yu. Filinovskii, Rotating RingDisk Electrode [in Russian], Nauka, Moscow (1987), pp. 17–25.

    Google Scholar 

  36. G. Boschloo and D. Fitzmaurice, J. Phys. Chem. B, 103, No. 12, 2228–2231 (1999).

    Article  Google Scholar 

  37. N. Maltanava, J. S. Poznyak, M. Ivanovskaya, N. Scharnagl, M. Starykevich, A. N. Salak, M. Soares, and A. Mazanik, J. Fluorine Chem., 221, 34–41 (2015).

    Article  Google Scholar 

  38. A. M. Trunov, Élektrokhimiya, 51, No. 4, 385–392 (2015).

    Google Scholar 

  39. A. M. Maltanava, N. Yu. Brezhneva, A. V. Mazanik, S. O. Mazheiko, T. V. Gaevskaya, E. V. Skorb, and S. K. Poznyak, Zh. Bel. Gos. Univ., Khimiya, 2, 63–75 (2020).

  40. M. R. Tarasevich, E. N. Khrushcheva, and N. A. Shumilova, Itogi Nauki Tekhnol., Ser. Élektrokhimiya, 13, 47–93 (1978).

  41. A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications, Springer, Boston (2002), pp. 143–248.

    Google Scholar 

  42. K. Gelderman, L. Lee, and S. W. Donne, J. Chem. Educ., 84, No. 4, 685 (2007).

    Article  Google Scholar 

  43. H. Zhu, M. Zhao, J. Zhou, W. Li, H. Wang, Z. Xu, L. Li, L. Pei, Z. Shi, S. Yan, Z. Li, and Z. Zou, Appl. Catal. B: Environ., 234, 100–108 (2018).

    Article  Google Scholar 

  44. N. Serpone, J. Phys. Chem. B, 110, No. 48, 24287–24293 (2006).

    Article  Google Scholar 

  45. K. Boubaker, Eur. Phys. J. Plus, 126, No. 1, 1–4 (2011).

    Article  Google Scholar 

  46. L. Chiodo, J. M. GarcíaLastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, Phys. Rev. B, 82, No. 4, Article ID 045207 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Maltanava.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 6, pp. 882–896, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltanava, H.M., Konakov, A.O., Gaevskaya, T.V. et al. Electrocatalytic and Photoelectrochemical Properties of Nanotubular TiO2 Electrodes Thermally Treated in Air and Hydrogen. J Appl Spectrosc 90, 1241–1254 (2024). https://doi.org/10.1007/s10812-024-01660-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01660-9

Keywords

Navigation