Skip to main content
Log in

Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the synthesis conditions on the surface morphology, phase composition, and electrocatalytic activity of materials in oxygen and hydrogen evolution reactions was investigated. For instance, the slopes in the potential verses the logarithm of the current density dependencies during oxygen evolution were 221 and 109 mV/dec for TiO2 nanotubes and platinum-coated layers, respectively. In the latter case, small deviations may be attributed to the structural heterogeneity of the material or the developed surface of the coating. As for pristine TiO2 nanotubes, an atypical Tafel slope was observed, almost twice the theoretical value, indicating the presence of a semiconductor component in the electrode capacitance. Studies showed that the materials are n-type semiconductors. The cathodic polarization stage leads to the formation of titanium suboxides in the nanotube recovery phase, contributing to an increase in the material electrical conductivity. This also allows for the creation of a porous developed surface matrix for the electrodeposition of catalytic metal layers. Tafel slopes were calculated for the investigated materials in the hydrogen evolution reaction. For TiO2 nanotubes, a slope of 175 mV/dec was observed. The material surface was partially blocked by hydroxides, resulting in a low number of active centers for the hydrogen evolution, and the polarization curve had a steep slope. In the case of TiO2 nanotubes coated with a platinum layer, a high number of cationic vacancies in the matrix and a deficit of oxygen ions facilitated the mobility of platinum atoms, leading to the emergence of a large number of active centers for the hydrogen evolution. As a result, the Tafel slope of the polarization curve was found to be 30 mV/dec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Walsh, F.C., Arenas, L.F., and Ponce de Leon, C., Developments in electrode design: Structure, decoration and applications of electrodes for electrochemical technology, J. Chem. Technol. Biotechnol., 2018, vol. 93, no. 11, p. 3073. https://doi.org/10.1002/jctb.5706

    Article  Google Scholar 

  2. Gurrappa, I. and Binder, L., Electrodeposition of nanostructured coatings and their characterization—a review, Sci. Technol. Adv. Mater., 2008, vol. 9, no. 4, p. 042001. https://doi.org/10.1088/1468-6996/9/4/043001

    Article  Google Scholar 

  3. Aliofkhazraei, M., Walsh, F.C., Zangari, G., Kockar, H., et al., Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications, Appl. Surf. Sci. Adv., 2021, vol. 6, no. 1, p. 100141. https://doi.org/10.1016/j.apsadv.2021.100141

    Article  Google Scholar 

  4. Riboni, F., Nguyen, N.T., So, S., and Schmuki, P., Aligned metal oxide nanotube arrays: Key-aspects of anodic TiO2 nanotube formation and properties, Nanoscale Horiz., 2016, vol. 1, p. 445. https://doi.org/10.1039/C6NH00054A

    Article  Google Scholar 

  5. Gautam, J., Yang, J.-M., and Yang, B.L., Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants, Colloids Surf A: Physicochem. Eng. Asp., 2022, vol. 643, p. 128786. https://doi.org/10.1016/j.colsurfa.2022.128786

    Article  Google Scholar 

  6. Palomares-Reyna, D., Carrera-Crespo, J.E., Sosa-Rodriguez, F.S., Garcia-Perez, U.M., et al., Photo-electrochemical and ozonation process to degrade ciprofloxacin in synthetic municipal wastewater, using C, N-codoped TiO2 with high visible-light absorption, J. Environ. Chem. Eng., 2022, vol. 10, p. 107380. https://doi.org/10.1016/j.jece.2022.107380

    Article  Google Scholar 

  7. Nie, M., Sun, H., Liao, J., Li, Q., et al., Study on the catalytic performance of Pd/TiO2 electrocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 2021, vol. 46, no. 9, p. 6441. https://doi.org/10.1016/j.ijhydene.2020.11.135

    Article  Google Scholar 

  8. Gurevich, Yu.Ya. and Pleskov, Yu.V., Photoelectrochemistry of semiconductors, in Semiconductors and Semimetals, Amsterdam: Elsevier, 1983, vol. 19, p. 255. https://doi.org/10.1016/S0080-8784(08)60277-X

    Book  Google Scholar 

  9. Butler, M.A., Aging effects in defect-doped semiconducting electrodes, J. Electrochem. Soc., 1979, vol. 126, p. 338. https://doi.org/10.1149/1.2129033

    Article  Google Scholar 

  10. Jeong, J., Jung, D., Shin, E.W. and Oh, E.-S., Boron-doped TiO2 anode materials for high-rate lithium ion batteries, J. Alloys Compd., 2014, vol. 604, p. 226. https://doi.org/10.1016/j.jallcom.2014.03.069

    Article  Google Scholar 

  11. Zhang, W., Gong, Y., Mellott, N.P., Liu, D., et al., Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries, J. Power Sources, 2015, vol. 276, p. 39. https://doi.org/10.1016/j.jpowsour.2014.11.098

    Article  Google Scholar 

  12. Moradi, M., Vasseghian, Y., Khataee, A., Kobya, M., et al., Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review, J. Ind. Eng. Chem., 2020, vol. 87, p. 18. https://doi.org/10.1016/j.jiec.2020.03.038

    Article  Google Scholar 

  13. Yang, Y. and Hoffmann, M.R., Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment, Environ. Sci. Technol., 2016, vol. 50, no. 21, p. 11888. https://doi.org/10.1021/acs.est.6b03540

    Article  Google Scholar 

  14. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., et al., Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length, J. Phys. Chem. B, 2006, vol. 110, p. 16179. https://doi.org/10.1021/jp064020k

    Article  Google Scholar 

  15. Dong, J., Ouyang, X., Han, J., Qiu, W., et al., Superhydrophobic surface of TiO2 hierarchical nanostructures fabricated by Ti anodization, Scr. Mater., 2013, vol. 69, p. 374. https://doi.org/10.1016/j.jcis.2014.01.014

    Article  Google Scholar 

  16. Albu, S.P., Roy, P., Virtanen, S., and Schmuki P., Self-organized TiO2 nanotube arrays: Critical effects on morphology and growth, Isr. J. Chem., 2010, vol. 50, p. 453. https://doi.org/10.1002/ijch.201000059

    Article  Google Scholar 

  17. Absalan, Y., Ryabov, M.A., and Kovalchukova, O.V., Thermal decomposition of bimetallic titanium complexes: A new method for synthesizing doped titanium nano-sized catalysts and photocatalytic application, Mater. Sci. Eng. C, 2019, vol. 97, p. 813. https://doi.org/10.1016/j.msec.2018.12.077

    Article  Google Scholar 

  18. Velichenko, A., Kordan, V., Shmychkova, O., Knysh, V., et al., The effect of Ti/TiO2 treatment on morphology, phase composition and semiconductor properties, Voprosy Khim. Khim. Tekhnol., 2022, vol. 4, p. 18. https://doi.org/10.32434/0321-4095-2022-143-4-18-23

    Article  Google Scholar 

  19. Knysh, V., Shmychkova, O., Luk’yanenko, T., and Velichenko, A., Template synthesis for the creation of photo- and electrocatalysts, Voprosy Khim. Khim. Tekhnol., 2023, vol. 3, p. 86. https://doi.org/10.32434/0321-4095-2023-148-3-86-93

    Article  Google Scholar 

  20. Chen, M., Pan, Sh., Zhang, C., Wang, C., et al., Electrochemical oxidation of reverse osmosis concentrates using enhanced TiO2–NTA/SnO2–Sb anodes with/without PbO2 layer, Chem. Eng. J., 2020, vol. 399, p. 125756. https://doi.org/10.1016/j.cej.2020.125756

    Article  Google Scholar 

  21. Kim, Ch., Kim, S., Choi, J., Lee, J., et al., Blue TiO2 nanotube array as an oxidant generating novel anode material fabricated by simple cathodic polarization, Electrochim. Acta, 2014, vol. 14, p. 113. https://doi.org/10.1016/j.electacta.2014.07.062

    Article  Google Scholar 

  22. Shmychkova, O.B., Luk’yanenko, T.V., Amadelli, R., and Velichenko A.B., PbO2 anodes modified by cerium ions, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 4, p. 493. https://doi.org/10.1134/S2070205114040169

    Article  Google Scholar 

  23. The Rietveld Method, Young R.A., Ed., IUCr Monographs of Crystallography, New York: Oxford Univ. Press, 1993.

  24. Rodriguez-Carvajal, J. and Roisnel, T., Line broadening analysis using FullProf*: Determination of microstructural properties, Mater. Sci. Forum., 2004, vols. 443–444, p. 123.

    Article  Google Scholar 

  25. Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J., Electronic and optical properties of anatase TiO2, Phys. Rev., 2000, vol. 61, p. 7459. https://doi.org/10.1103/PhysRevB.61.7459

    Article  Google Scholar 

  26. Luca, V., Djajanti, S., and Howe, R.F., Structural and electronic properties of sol−gel titanium oxides studied by X-ray absorption spectroscopy, Phys. Rev., 1998, vol. 102, p. 10650. https://doi.org/10.1021/jp981644k

    Article  Google Scholar 

  27. Sanjines, R., Tang, H., Berger, H., Gozzo, F., et al., Electronic structure of anatase TiO2 oxide, J. Appl. Phys., 1994, vol. 75, p. 2945. https://doi.org/10.1063/1.356190

    Article  Google Scholar 

  28. Landmann, M., Rauls, E., and Schmidt, W.G., The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Condens. Matter Phys., 2012, vol. 24, p. 1. https://doi.org/10.1088/0953-8984/24/19/195503

    Article  Google Scholar 

  29. Wu, X., Ling, Yu., Liu, L., and Huang, Zh., Enhanced photoelectrocatalytic degradation of methylene blue on smooth TiO2 nanotube array and its impedance analysis, J. Electrochem. Soc., 2009, vol. 156, no. 5, p. K65. https://doi.org/10.1149/1.3089312

    Article  Google Scholar 

  30. Trasatti, S. and Lodi, G., Oxygen and chlorine evolution at conductive metallic oxides, in Electrodes of Conductive Metallic Oxides, Trasatti, S., Ed., Amsterdam: Elsevier, 1981, Part B, p. 521.

  31. Trasatti, S., Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta, 1984, vol. 29, no. 11, p. 1503. https://doi.org/10.1016/0013-4686(84)85004-5

    Article  Google Scholar 

  32. Amadelli, R., Maldotti, A., Molinari, A., Danilov, F.I., et al., Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media, J. Electroanal. Chem., 2002, vol. 534, no. 1, p. 1. https://doi.org/10.1016/S0022-0728(02)01152-X

    Article  Google Scholar 

  33. Kasian, O.I., Luk’yanenko, T.V., Demchenko, P., Gladyshevskii, R.E., et al., Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt, Electrochim. Acta, 2013, vol. 109, p. 630 https://doi.org/10.1016/j.electacta.2013.07.162

    Article  Google Scholar 

  34. Ometto, F.B., Paganin, V.A., Hammer, P., and Ticianelli, E.A., Effects of metal–support interaction in the electrocatalysis of the hydrogen evolution reaction of the metal-decorated titanium dioxide supported carbon, Catalysts, 2023, vol. 13, p. 22. https://doi.org/10.3390/catal13010022

    Article  Google Scholar 

  35. Niu, H., Wang, Q., Huang, C., Zhang, M., et al., Noble metal-based heterogeneous catalysts for electrochemical hydrogen evolution reaction, Appl. Sci., 2023, vol. 13, no. 4, p. 2177. https://doi.org/10.3390/app13042177

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Ukraine (grant no. 0123U102758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Shmychkova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmychkova, O.B., Knysh, V.A., Luk’yanenko, T.V. et al. Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides. Surf. Engin. Appl.Electrochem. 60, 232–240 (2024). https://doi.org/10.3103/S106837552402011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837552402011X

Keywords:

Navigation