Skip to main content
Log in

Solid-State Nuclear Magnetic Resonance of 133Cs in CsPbBr3+Bi Semiconductor Perovskites

  • Published:
Journal of Applied Spectroscopy Aims and scope

133Cs NMR was employed to study the structural characteristics and properties of perovskites at the atomic level. CsBixPb1−xBr3 perovskites doped with Bi at concentrations of 0.0059, 0.0072, and 0.0120 were studied. The importance of high-quality materials for applications in optics and photonics was noted. 133Cs NMR showed high sensitivity for studying these concentrations of Bi, which affect the stability of perovskites and their dynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Dmitriev and I. P. Zvyagin, Phys.Usp., 53, No. 8, 789–803 (2010).

  2. E. I. Marchenko, S. A. Fateev, A. A. Petrov, E. A. Goodilin, and A. B. Tarasov, Mendeleev Commun., 30, 279–281 (2020); https://doi.org/10.1016/j.mencom.2020.05.005.

  3. Z.-J. Li, E. Hofman, A. H. Davis, A. Khammang, J. T. Wright, B. Dzikovski, R. W. Meulenberg, and W. Zheng, Chem. Mater., 30, 6400–6409 (2018); https://doi.org/10.1021/acs.chemmater.8b02657.

  4. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, and S. G. Mhaisalkar, Adv. Mater., 28, Article ID 6804 (2016).

  5. Y. Li, Z.-F. Shi, S. Li, L.-Z. Lei, H.-F. Ji, D. Wu, T.-T. Xu, Y.-T. Tian, and X.-J. Li, J. Mater. Chem. C, 5, 8355–8360 (2017); https://doi.org/10.1039/C7TC02137B.

  6. A. Kostopoulou, E. Kymakis, and E. Stratakis, J. Mater. Chem. A, 6, 9765–9798 (2018); https://doi.org/10.1039/C8TA01964A.

  7. V. B. Mykhaylyk, H. Kraus, V. Kapustianyk, H. J. Kim, P. Mercere, M. Rudko, P. Da Silva, O. Antonyak, and M. Dendebera, Sci. Rep., 10, 8601 (2020); https://doi.org/10.1038/s41598-020-65672-z.

  8. B. Luo, F. Li, K. Xu, Y. Guo, Y. Liu, Z. Xia, and J. Z. Zhang, J. Mater. Chem. C, 7, No. 10, 2781–2808 (2019).

    Article  Google Scholar 

  9. X. L. Miao, T. Qiu, S. F. Zhang, H. Ma, Y. Q. Hu, F. Bai, and Z. C. Wu, J. Mater. Chem. C, 5, No. 20, 4931–4939 (2017); https://doi.org/10.1039/C7TC00417F.

    Article  Google Scholar 

  10. J. Yin, G. H. Ahmed, O. M. Bakr, J. L. Bredas, and O. F. Mohammed, ACS Energy Lett., 4, No. 3, 789–795 (2019); https://doi.org/10.1021/acsenergylett.9b00209.

  11. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, Energy Environ. Sci., 9, No. 6, 1989–1997 (2016); https://doi.org/10.1039/c5ee03874j.

    Article  Google Scholar 

  12. R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, and O. F. Mohammed, J. Am. Chem. Soc., 139, No. 2, 731–737 (2017); https://doi.org/10.1021/jacs.6b09575.

    Article  Google Scholar 

  13. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, and M. Scheffler, Sci. Adv., 5, eaav0693 (2019); https://doi.org/10.1126/sciadv.aav0693.

  14. L. Xu, S. Yuan, H. Zeng, and J. Song, Mater. Today Nano, 6, 100036 (2019); https://doi.org/10.1016/j.mtnano.2019.100036.

  15. R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, and O. F. Mohammed, J. Am. Chem. Soc., 139, 731–737 (2017); https://doi.org/10.1021/jacs.6b09575.

  16. O. A. Lozhkina, A. A. Murashkina, V. V. Shilovskikh, Y. V. Kapitonov, V. K. Ryabchuk, A. V. Emeline, and T. Miyasaka, J. Phys. Chem. Lett., 9, 5408–5411 (2018); https://doi.org/10.1021/acs.jpclett.8b02178.

  17. A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, J. Phys. Chem. Lett., 7, No. 2, 295–301 (2016); https://doi.org/10.1021/acs.jpclett.5b02681.

    Article  Google Scholar 

  18. F. Aiello and S. Masi, Nanomaterials, 11, No. 8, 2024 (2021); https://doi.org/10.3390/nano11082024.

  19. V. V. Ogloblichev, V. L. Matukhin, I. Y. Arapova, E. V. Schmidt, and R. R. Khusnutdinov, Appl. Magn. Res., 50, 619–625 (2019); https://doi.org/10.1007/s00723-018-1096-9.

  20. V. L. Matukhin, A. N. Gavrilenko, E. V. Schmidt, S. B. Orlinskii, I. G. Sevastianov, S. O. Garkavyi, J. Navratil, and P. Novak, Appl. Magn. Res., 52, 1729–1737 (2021); https://doi.org/10.1007/s00723-021-01409-z.

  21. J. Skibsted, T. Vosegaard, H. Bildsoe, and H. J. Jakobsen, J. Phys. Chem., 100, 14872–14881 (1996); https://doi.org/10.1021/jp9608741.

  22. T. Minami, Y. Tokuda, H. Masai, Y. Ueda, Y. Ono, S. Fujimura, and T. Yoko, J. Asian Ceram. Soc., 2, 333–338 (2014); https://doi.org/10.1016/j.jascer.2014.07.001.

  23. S. Kroeker, K. Eichele, R. E. Wasylishen, and J. F. Britten, J. Phys. Chem. B, 101, 3727–3733 (1997); https://doi.org/10.1021/jp970043a.

  24. O. B. Lapina, V. M. Mastikhin, A. A. Shubin, K. M. Eriksen, and R. Fehrmann, J. Mol. Catal. A: Chem., 99, No. 2, 123–130 (1995); https://doi.org/10.1016/1381-1169(95)00043-7.

  25. O. B. Lapina, V. V. Terskikh, A. A. Shubin, V. M. Mastikhin, K. M. Eriksen, and R. Fehrmann, J. Phys. Chem. B, 101, No. 45, 9188–9194 (1997); https://doi.org/10.1021/jp971789b.

    Article  Google Scholar 

  26. L. Piveteau, V. Morad, and M. V. Kovalenko, J. Am. Chem. Soc., 142, 19413–19437 (2020); https://doi.org/10.1021/jacs.0c07338.

  27. A. Karmakar, A. Bhattacharya, D. Sarkar, G. M. Bernard, A. Mar, and V. Michaelis, Chem. Sci., 12, 3253–3263 (2021); https://doi.org/10.1039/d0sc05614f.

  28. F. Ji, F. Wang, L. Kobera, S. Abbrent, J. Brus, W. Ning, and F. Gao, Chem. Sci., 12, 1730–1735 (2021); https://doi.org/10.1039/d0sc05264g.

  29. A. Karmakar, A. Bhattacharya, G. M. Bernard, A. Mar, and V. K. Michaelis, ACS Mater. Lett., 3, 261–267 (2021); https://doi.org/10.1021/acsmaterialslett.0c00596.

  30. Y. Chen, S. R. Smock, A. H. Flintgruber, F. A. Perras, R. L. Brutchey, and A. J. Rossini, J. Am. Chem. Soc., 142, No. 13, 6117–6127 (2020); https://doi.org/10.1021/jacs.9b13396.

    Article  Google Scholar 

  31. I. M. Sharaf, A. V. Shurukhina, I. S. Komarova, and A. V. Emeline, Mendeleev Commun., 31, 465–468 (2021); https://doi.org/10.1016/j.mencom.2021.07.009.

  32. V. I. Chizik, Yu. S. Chernyshev, A. V. Donets, V. V. Frolov, A. I. Komolkin, and M. G. Shelyapina, Magnetic Resonance and its Applications, XX, Springer, Cham, Heidelberg, New York, Dordrecht, London (2014), https://doi.org/10.1007/978-3-319-05299-1.

    Article  Google Scholar 

  33. Bruker TopSpin; https://www.bruker.com/service/information-communication/user-manuals/nmr.htm.

  34. F. A. Perras, C. M. Widdifield, and D. L. Bryce, Solid State Nucl. Magn. Reson., 4546, 36–44 (2012); https://doi.org/10.1016/j.ssnmr.2012.05.002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gavrilenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, pp. 577–583, July-August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilenko, A.N., Gnezdilov, O.I., Emeline, A.V. et al. Solid-State Nuclear Magnetic Resonance of 133Cs in CsPbBr3+Bi Semiconductor Perovskites. J Appl Spectrosc 90, 769–774 (2023). https://doi.org/10.1007/s10812-023-01594-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01594-8

Keywords

Navigation